Модель межотраслевого баланса
В основе этих моделей лежит балансовый метод, т.е. метод взаимного сопоставления имеющихся ресурсов, например, трудовых, и потребностей в них.
Как отмечено выше, балансовые модели строятся в виде числовых матриц. Такую структуру имеют межотраслевой и межрайонный баланс производства и распределения продукции в народном хозяйстве, модели развития отраслей, межотраслевые балансы производства и распределения продукции отдельных регионов, модели промфинпланов предприятий и фирм и т.д. Несмотря на специфику этих моделей, их объединяет не только общий формальный (матричный) принцип построения и единства системы расчетов, но и аналогичность ряда экономических характеристик. Это позволяет рассматривать структуру, содержание и основные зависимости матричных моделей на примере одной из них, а именно, на примере межотраслевого баланса производства и распределения продукции в народном хозяйстве.
Принципиальная схема межотраслевого баланса (МОБ) производства и распределения совокупного общественного продукта в стоимостном выражении приведена в таблице.
Производящие отрасли | Потребляющие отрасли | Конечная продукция | Валовая продукция | |||||
… | … | n | ||||||
. . . n | x11 x21 x31 xn1 | x12 x22 x32 xn2 | x13 x23 x33 xn3 | … … … | … … … | x1n x2n x3n xnn | Y1 Y2 Y3 Yn | X1 X2 X3 … … … Xn |
Амортизация Оплата труда Чистый доход | С1 V1 | С2 V2 | С3 V3 | … | … … | Cn Vn | ||
Валовая продукция | X1 | X2 | X3 | … | … | Xn |
Первый квадрант МОБ – это шахматная таблица межотраслевых связей. Представляет собой квадратную матрицу порядка n, сумма всех элементов которой равняется годовому фонду возмещения затрат средств производства в материальной сфере.
Во втором квадранте представленная конечная продукция всех отраслей материального производства, направленная на потребление и накопление (характеризует отраслевую материальную структуру национального дохода).
Третий квадрант МОБ тоже характеризует национальный доход, но со стороны его стоимостного состава как сумму чистой продукции и амортизации. Сумма амортизации (Сj) и чистой продукции (Vj+mj) некоторой отрасли будем называть чистой продукцией этой отрасли и обозначить Zj.
Четвертый квадрант баланса отражает конечное распределение и использование национального дохода. Общий итог этого квадранта, как второго и третьего должен быть равен созданному за год национальному доходу. Рассмотрим два важнейших соотношения, отражающих сущность МОБ и являющихся основой его экономико–математической модели.
Во–первых, рассматривая схему баланса по столбцам можно сделать очевидный вывод, что итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли:
, (10.1)
Во–вторых, рассматривая схему МОБ по строкам для каждой производящей отрасли, можно видеть, что валовая продукция той или иной отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции данной отрасли.
, (10.2)
Просуммируем по всем отраслям уравнение (10.1), в результате чего получим
Аналогичное суммирование уравнений (10.2) дает:
Отсюда следует соблюдение соотношения
(10.3)
Величины называются коэффициентами прямых материальных затрат и рассчитываются следующим образом:
, (10.4)
Определение 1. Коэффициент прямых материальных затрат показывает, какое количество продукции i–ой отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j–ой отрасли.
С учетом формулы (10.4) систему баланса (10.2) можно переписать в виде
, (10.5)
или в матричной форме
(10.6)
Система уравнений (10.5) или в матричной форме (10.6) называется экономико–математической моделью межотраслевого баланса (моделью Леонтьева).
С помощью этой модели можно выполнить 3 варианта расчетов:
А) Задав в модели величины валовой продукции каждой отрасли ( ), можно определить объемы конечной продукции каждой отдельной отрасли ( ):
(10.7)
В) Задав величины конечной продукции всех отраслей ( ), можно определить величины валовой продукции каждой отрасли ( ):
(10.8)
С) Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых, в этом варианте расчета удобнее пользоваться не матричной формой модели (10.6), а системой линейных уравнений (10.5).
Пусть , тогда (10.9)
Или , (10.10)
Коэффициенты называются коэффициентами полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков.
Определение 2. Коэффициенты полных материальных затрат показывает, какое количество продукции i–ой отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j–ой отрасли.
Анализ модели МБ приводит к следующим выводам:
а) – по определению;
б) , т.к. процесс воспроизводства нельзя было бы осуществлять, если бы для собственного воспроизводства в отрасли затрачивалось большее количество продуктов, чем создавалось;
в) – из содержательных систем .
Определение 3. Матрица называется продуктивной, если существует такой , что . Отсюда следует, что для продуктивной матрицы из (10.6) существует положительный вектор конечной продукции .
Для того, чтобы матрица была продуктивной, необходимо и достаточно, чтобы выполнялось одно из перечисленных ниже условий.
1) матрица неотрицательно обратима, т.е. существует обратная матрица .
2) матричный ряд сходится, причем его сумма равна .
3) наибольшее по модулю собственное значение матрицы , т.е. решения характеристического уравнения
строго меньше единицы
4) все главные миноры матрицы , порядка от 1 до n положительны.
Замечание. Более простым, но только достаточным признаком продуктивности матрицы является следующий признак , т.е. если величина наибольшего из сумм ее элементов в каждом столбце < 1, то матрица продуктивна.
Дата добавления: 2020-11-18; просмотров: 397;