Геометрическая оптика 10 глава
В современных ЭПР-спектрометрах используют частоту около 10 ГГц (длина волны 0,03 м). Это означает в соответствии с (25.9), что максимум ЭПР поглощения для g = 2 наблюдается при В = 0,ЗТл.
Практически на ЭПР-спектрометрах регистрируют не кривую поглощения энергии (рис. 25.6, а), а ее производную (рис. 25.6, б). Одно из медико-биологических применений метода ЭПР заключается в обнаружении и исследовании свободных радикалов. Так, например, спектры ЭПР облученных белков позволили объяснить механизм образования свободных радикалов и в связи с этим проследить изменения первичных и вторичных продуктов радиационного поражения.
ЭПР широко используют для изучения фотохимических процессов, в частности фотосинтеза. Исследуют канцерогенную активность некоторых веществ.
С санитарно-гигиенической целью метод ЭПР используют для определения концентрации радикалов в воздушной среде.
Сравнительно недавно специально для изучения биологических молекул был предложен метод спин-меток, сущность которого состоит в том, что с молекулой исследуемого объекта связывается парамагнитное соединение с хорошо известной структурой. По спектрам ЭПР находят положение такой спин-метки в молекуле. Вводя метки в различные части молекул, можно установить расположение различных групп атомов, их взаимодействия, изучать природу и ориентацию химических связей и обнаруживать молекулярное движение. Присоединение к молекуле не одной, а нескольких спин-меток, например двух, позволяет получить сведения о расстояниях меченых групп и их взаимной ориентации.
Используются также и спиновые зонды — парамагнитные частицы, которые нековалентно связаны с молекулами. Изменение ЭПР-спектра спиновых зондов дает информацию о состоянии окружающих его молекул. На рис. 25.7 показаны ЭПР-спектры нитроксильного радикала, который в качестве спинового зонда помещен в глицерин. С увеличением температуры уменьшается вязкость глицерина, и это изменяет вид спектра ЭПР. Таким образом, по форме спектра ЭПР можно определить микровязкость — вязкость ближайшего окружения спинового зонда. Так, в частности, удается определить микровязкость липидного слоя мембран (см. § 11.2).
В целом исследования биологических объектов методом ЭПР имеют широкую область применений.
§ 25.3. Ядерный магнитный резонанс. ЯМР-интроскопия (магнито-резонансная томография)
Ядерный магнитный резонанс не относится к разделу физики атомов и молекул, однако рассматривается в одной главе с ЭПР как явление магнитного резонанса.
Магнитный момент ядер суммируется из магнитных моментов нуклонов. Обычно этот момент выражают в ядерных магнетонах (mя); mя = 5,05 • 10-27А • м2. Магнитный момент протона приближенно равен рmp = 2,79mя, а нейтрона ртп = -1,91mя. Знак «-» означает, что магнитный момент нейтрона ориентирован противоположно спину.
Приведем магнитные моменты ртя некоторых ядер, выраженные в ядерных магнетонах.
Таблица 32
Магнитный момент ядра, помещенного в магнитное поле, может принимать лишь дискретную ориентацию. Это означает, что энергии ядра будут соответствовать подуровни, расстояние между которыми зависит от индукции магнитного поля.
Если в этих условиях на ядро воздействовать электромагнитным полем, то можно вызвать переходы между подуровнями. Чтобы осуществить эти переходы, а также поглощение энергии электромагнитного поля, необходимо выполнение условия, аналогичного (25.9):
где gя — ядерный множитель Ланде.
Избирательное поглощение электромагнитных волн определенной частоты веществом в постоянном магнитном поле, обусловленное переориентацией магнитных моментов ядер, называют ядерным магнитным резонансом.
ЯМР можно наблюдать при выполнении условия (25.10) лишь для свободных атомных ядер. Экспериментальные значения резонансных частот ядер, находящихся в атомах и молекулах, не соответствуют (25.10). При этом происходит «химический сдвиг», который возникает в результате влияния локального (местного) магнитного поля, создаваемого внутри атома электронными токами i индуцированными внешним магнитным полем. В результате такого «диамагнитного эффекта» возникает дополнительное магнитное поле, индукция которого пропорциональна индукции внешнего магнитного поля, но противоположна ему по направлению. Поэтому полное эффективное магнитное поле, действующее на ядро, характеризуется индукцией
где s — постоянная экранирования, по порядку величины равная 10-6 и зависящая от электронного окружения ядер.
Отсюда следует, что для данного типа ядер, находящихся в различных окружениях (разные молекулы или разные, не эквивалентные места одной и той же молекулы), резонанс наблюдается при различных частотах. Это и определяет химический сдвиг. Он зависит от природы химической связи, электронного строения молекул, концентрации данного вещества, типа растворителя, температуры и т. д.
Если два или несколько ядер в молекуле экранированы по-разному, т. е. ядра в молекуле занимают химически не эквивалентные положения, то они имеют различный химический сдвиг. Спектр ЯМР такой молекулы содержит столько резонансных линий, сколько химически не эквивалентных групп ядер данного типа в ней имеется. Интенсивность каждой линии пропорциональна числу ядер в данной группе.
В спектрах ЯМР различают два типа линий по их ширине. Спектры твердых тел имеют большую ширину, и эту область применения ЯМР называют ЯМР широких линий. В жидкостях наблюдают узкие линии, и это называют ЯМР высокого разрешения.
На рис. 25.8 изображены кривые ядерного магнитного резонанса для твердых тел (а) и жидкостей (б). Острота пика в жидкостях обусловлена следующим. Каждое ядро взаимодействует со своими соседями. Так как ориентация ядерных магнитных моментов, окружающих ядро данного типа, изменяется от точки к точке в веществе, то полное магнитное поле, действующее на различные однотипные ядра, также изменяется. Это означает, что для всей совокупности ядер область резонанса должна представлять собой широкую линию. Однако из-за быстрых перемещений молекул в жидкости локальные магнитные поля недолговечны. Это приводит к тому, что ядра жидкости находятся под воздействием одного и того же среднего поля, поэтому линия резонанса является резкой.
Для химических соединений, в которых наблюдается ЯМР ядер, занимающих химически эквивалентные места в молекуле, наблюдается одиночная линия. Соединения более сложного строения дают спектры из многих линий.
По химическому сдвигу, числу и положению спектральных линий можно установить структуру молекул.
Химики и биохимики широко используют метод ЯМР для исследования структуры от простейших молекул неорганических веществ до сложнейших молекул живых объектов, а также при решении многих задач, связанных с протеканием химических реакций, изучением структур исходных веществ и получающихся в результате реакций продуктов. Одним из преимуществ этого анализа является то, что он не разрушает объектов исследования, как это происходит, например, при химическом анализе.
Очень интересные возможности для медицины может дать определение параметров спектра ЯМР во многих точках образца. Постепенно, послойно проходя весь образец (сканируя), можно получить полное представление о пространственном распределении молекул, содержащих, например, атомы водорода или фосфора (при магнитном резонансе от протонов или ядер фосфора соответственно).
Все это осуществляется без разрушения образца, и поэтому можно проводить исследование на живых объектах. Такой метод называют ЯМР-интроскопией (об интроскопии см. § 19.8) или магнито-резонансной томографией (МРТ).Он позволяет различать кости, сосуды, нормальные ткани и ткани со злокачественной патологией. ЯМР-интроскопия позволяет различать изображение мягких тканей, например, отличает изображение серого вещества мозга от белого, опухолевых клеток от здоровых, при этом минимальные размеры патологических «включений» могут составлять доли миллиметра. Можно ожидать, что ЯМР-интроскопия станет эффективным методом диагностики заболеваний, которые связаны с изменением состояний органов и тканей.
Частота электромагнитных волн, вызывающих переходы между энергетическими состояниями при ЭПР и ЯМР, соответствует радиодиапазону. Поэтому оба этих явления относятся к радиоспектроскопии.
РАЗДЕЛ 8
Ионизирующие излучения. Основы дозиметрии
Ионизирующим излучением называют потоки частиц и электромагнитных квантов, взаимодействие которых со средой приводит к ионизации ее атомов и молекул. Ионизирующим излучением являются рентгеновское и g-излучения, потоки a-частиц, электронов, позитронов, протонов, нейтронов.
В разделе описываются как источники ионизирующего излучения (рентгеновские трубки, радионуклиды1, ускорители), так и физические вопросы применения этого излучения для медицинских целей.
Медикам и биологам несомненно интересны и такие вопросы, как взаимодействие ионизирующего излучения с веществом и элементы дозиметрии ионизирующего излучения.
1 Нуклиды — атомы, ядра которых отличаются по своему составу, т. е. содержат различные количества протонов или нейтронов либо и тех и других частиц. В ряде случаев этот термин относят к общему названию атомных ядер. Радионуклиды — нуклиды, способные к радиоактивному распаду.
ГЛАВА 26
Дата добавления: 2020-11-18; просмотров: 275;