Обобщенный метод наименьших квадратов
На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. Например, спрос на некоторое благо определяется не только ценой данного блага, но и ценами на замещающие и дополняющие блага, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии рассматривается множественная регрессия
(1)
Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и в ряде других вопросов экономики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.
Множественный регрессионный анализ является развитием парного регрессионного анализа в случаях, когда зависимая переменная связана более чем с одной независимой переменной. Большая часть анализа является непосредственным расширением парной регрессионной модели, но здесь также появляются и некоторые новые проблемы, из которых следует выделить две. Первая проблема касается исследования влияния конкретной независимой переменной на зависимую переменную, а также разграничения её воздействия и воздействий других независимых переменных. Второй важной проблемой является спецификация модели, которая состоит в том, что необходимо ответить на вопрос, какие факторы следует включить в регрессию (1), а какие – исключить из неё. В дальнейшем изложение общих вопросов множественного регрессионного анализа будем вести, разграничивая эти проблемы. Поэтому вначале будем полагать, что спецификация модели правильна.
Самой употребляемой и наиболее простой из моделей множественной регрессии является линейная модель множественной регрессии:
(2)
По математическому смыслу коэффициенты в уравнении (2) равны частным производным результативного признака y по соответствующим факторам:
, ,…, .
Параметр α называется свободным членом и определяет значение y в случае, когда все объясняющие переменные равны нулю. Однако, как и в случае парной регрессии, факторы по своему экономическому содержанию часто не могут принимать нулевых значений, и значение свободного члена не имеет экономического смысла. При этом, в отличие от парной регрессии, значение каждого регрессионного коэффициента равно среднему изменению y при увеличении xj на одну единицу лишь при условии, что все остальные факторы остались неизменными. Величина ε представляет собой случайную ошибку регрессионной зависимости.
Получение оценок параметров уравнения регрессии (2) – одна из важнейших задач множественного регрессионного анализа. Самым распространенным методом решения этой задачи является метод наименьших квадратов (МНК). Его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной y от её значений , получаемых по уравнению регрессии. Поскольку параметры являются неизвестными константами, вместо теоретического уравнения регрессии (2) оценивается так называемое эмпирическое уравнение регрессии, которое можно представить в виде:
(3)
Здесь - оценки теоретических значений , или эмпирические коэффициенты регрессии, е – оценка отклонения ε. Тогда расчетное выражение имеет вид:
(4)
Пусть имеется n наблюдений объясняющих переменных и соответствующих им значений результативного признака:
(5)
Для однозначного определения значений параметров уравнения (4) объем выборки n должен быть не меньше количества параметров, т.е. . В противном случае значения параметров не могут быть определены однозначно. Если n=p+1, оценки параметров рассчитываются единственным образом без МНК простой подстановкой значений (5) в выражение (4). Получается система (p+1) уравнений с таким же количеством неизвестных, которая решается любым способом, применяемым к системам линейных алгебраических уравнений (СЛАУ). Однако с точки зрения статистического подхода такое решение задачи является ненадежным, поскольку измеренные значения переменных (5) содержат различные виды погрешностей. Поэтому для получения надежных оценок параметров уравнения (4) объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при xj в уравнении (4) в 6-7 раз.
Дата добавления: 2016-07-27; просмотров: 2287;