Предмет и метод математической статистики
Предмет математической статистики – изучение свойств массовых явлений в биологии, экономике, технике и других областях. Эти явления обычно представляются сложными, вследствие разнообразия (варьирования) отдельных индивидуумов или единиц. Чтобы получить правильное представление об изучаемых свойствах массовых явлений и дать им определенные количественные оценки, их подвергают совместному рассмотрению и анализу. Отдельные единицы или индивидуумы, обладающие некоторым общим свойством, объединяют в совокупности. Наблюдаемые единицы называют вариантами (данными, датами), а образуемую совокупность единиц – статистической совокупностью.
Статистическая совокупность может быть образована по одному или по нескольким признакам. Она может состоять из одной или нескольких однородных в отношении изучаемого свойства групп. Однако часто бывает целесообразно подразделить отдельные наблюдаемые единицы на группы для достижения большей однородности их внутри этих групп.
Теорию и методы изучения свойств массовых явлений, вычисления и анализа их количественных характеристик излагает наука, носящая название – математическая статистика.
Раньше других начали изучать массовые явления в биологии, главным образом размерные характеристики человека. В 80-е годы XIX в. науку, излагающую методы изучения массовых явлений в биологии, английский ученый Ф. Гальтон назвал биометрией (от лат. bios – жизнь, metron – мера).
Термин «вариационная статистика» был введен позднее. Он шире и точнее отражает сущность данной науки и означает, что вариационная статистика измеряет все массовые явления. Однако и этот термин не единственный. Теория и методы наблюдений и интерпретации массовых явлений излагаются в последнее время под различными названиями, среди которых наиболее общим является термин «статистические методы» или «математическая статистика».
Метод изучения массовых явлений, применяемый статистикой, основан на теории вероятностей. Теория вероятностей устанавливает закономерности событий, наступающих случайно и называемых случайными. Статистика предполагает анализ массовых явлений, имеющих также случайный характер в распределении значений отдельных единиц, составляющих явление.
Вместе с тем, метод статистики принципиально иной. Теория вероятностей имеет дело с исходными явлениями, структура которых известна, например, содержание шаров в урне (сколько белых и сколько черных). В самом общем смысле задача теории вероятностей состоит в том, чтобы математически – дедуктивным путем (идя от общего к частному) вывести теоремы о наступлении того или иного события в серии испытаний.
Дедуктивные выводы имеют такую общую форму:
Большая посылка: все зерна в ящике белые.
Малая посылка: эти зерна (определенная пригоршня) из данного ящика.
Заключение: эти зерна (пригоршня) белые.
Дедуктивное заключение не может быть ошибочным, если посылки правильны. Здесь налицо вся информация, содержащаяся в посылках. Заключение является только выражением подразумеваемой в посылках закономерности.
Статистика имеет дело с открытыми системами, не охваченными сплошным изучением. Центральной задачей математической статистики как метода исследования являются заключения, выходящие за рамки изученного материала, т. е. заключения о свойствах статистических совокупностей, принимая во внимание и неизученную их часть.
Всю статистическую совокупность, в отношении которой делают статистические обобщения и заключения, называют общей, или генеральной совокупностью, а часть ее, охваченную непосредственным наблюдением, называют выборочной совокупностью.
Вариационная статистика применяет метод оценки общей совокупности на основе изученных отдельных единиц или на основе выборочных совокупностей.
Метод изучения явлений, при котором приходят к обобщениям, изучив отдельные случаи этого явления, называется методом индукции (от частного - к общему).
Следовательно, вариационная статистика использует метод индуктивных заключений.
Индуктивное заключение, как общий логический процесс, идущий от большой и малой посылки, имеет такую форму:
Большая посылка: эти зерна (определенная пригоршня) из данного ящика.
Малая посылка: эти зерна белые.
Заключение: все зерна в ящике белые.
Очевидно, что заключение с индуктивной аргументацией шире, чем посылки. В заключение добавляется нечто новое, расширяющее знания об изучаемом явлении. Это потенциальное расширение знаний требует осторожности. Оно может быть плодотворно, но существует некоторая опасность получить необоснованные и ложные выводы.
Логическим основанием индуктивного заключения является предположение о единообразии в системе фактов, относящихся к посылкам и заключению. Это предположение, называемое единообразием в природе, статистической устойчивостью опыта, ограничением независимой вариации в природе, всегда представляет как бы невысказанную посылку индукции.
Если бы единообразие в естественных процессах не проявлялось, природе был бы свойствен полный хаос. При этом никакое нагромождение фактов не могло бы оправдать индукцию. Нельзя было бы ничего сказать об условиях за пределами опыта. Но природе свойственно определенное единообразие в поведении отдельных единиц, составляющих то или иное массовое явление. Однако это единообразие в природе не столь строго, чтобы можно было сделать точную оценку массового (общего) явления наблюдаемых единиц. Поэтому статистические заключения о свойствах генеральных совокупностей по выборочным всегда имеют вероятностный характер, т. е. делаются с определенной степенью безошибочности и никогда не делаются с полной достоверностью.
Следует отметить, что конструкция выборочных оценок оказывается более предпочтительной даже в тех случаях, когда все единицы, составляющие то или иное явление, могут быть измерены,
т. е. относятся к ограниченным генеральным совокупностям. Это положение, затронувшее различные виды генеральных совокупностей, нуждается в более широком пояснении. На практике встречаются обследуемые генеральные совокупности конечные и бесконечные. Примером первой может служить выборочное обследование, допустим, бюджетов семей в определенном городе.
С бесконечными совокупностями имеют дело при различных экспериментальных исследованиях, когда вопрос заключается не в том, чтобы получить точный результат в данном эксперименте, но главным образом в оценке того, каковы будут результаты массового применения данного процесса – биологического, технологического или экономического. Предположим, производится оценка степени всхожести семян на нескольких десятках делянок (в % от обследованных единиц). В данном случае генеральная совокупность бесконечна, ибо для оценки не столь уж важно, сколько взошло семян на данных делянках, как то, каковы будут всходы в производстве. Здесь научный эксперимент становится как бы «механизмом» получения случайной выборки.
Возможны обстоятельства, когда полезно прибегнуть к особой логической конструкции – гипотетической генеральной сверхсовокупности. Иногда мы можем располагать данными даже сплошного обследования реально существующей совокупности, и все же бывает полезно рассматривать эти данные как выборку из некоторой сверхсовокупности. Так поступают, когда не только нужны полученные факты, но и необходимо выявить общую закономерность, по отношению к которой статистический материал представляется лишь частным случаем.
Предположим, что из статистических обследований рождаемости в стране за ряд лет установлено, что 52% из числа родившихся составили мальчики. Эти данные получены путем сплошного обследования и характеризуют явление однозначно. Однако, если нас интересует результат и за пределами обследованных лет или проверяется заключение о том, что мальчиков рождается больше, тогда полученные данные следует рассматривать как выборку из некоторой бесконечной сверхсовокупности различных возможных пропорций рождений по полу. На основе таких данных, пользуясь методами статистики, представляется возможным исследовать, приемлемо ли предположение о более частой рождаемости мальчиков. Заметим, что определяемая таким образом сверхсовокупность не ограничена ни численностью, ни территорией, в которой произведен эксперимент.
Дата добавления: 2020-10-25; просмотров: 361;