Двигатель постоянного тока
Принцип действия двигателя постоянного тока может быть пояснен на примере работы простейшей одновитковой машины (рис. 2.3). При подключении обмотки якоря к источнику постоянного напряжения в ней будет протекать электрический ток, величина которого согласно закону Ома обратно пропорциональна сопротивлению этой обмотки
. (2.1)
Конструкция машины такова, что обмотка якоря находится в магнитном поле, создаваемом постоянными магнитами. Согласно закону Ампера (1.26) на проводник с током, размещенным в магнитном поле перпендикулярно линиям магнитной индукции, действует электромагнитная сила
, (2.2)
направление которой определяется по правилу “левой руки” (см. рис. 2.4). Эти силы создают механический момент, называемый электромагнитным моментом
(2.3)
или с учетом (1.26)
. (2.4)
В выражениях (2.2)-(2.4): – магнитная индукция в воздушном зазоре между полюсом и якорем в месте расположения проводника; ℓ – активная длина проводника; – диаметр якоря.
Электромагнитный момент приведет вращающуюся часть двигателя в движение. При этом проводники обмотки будут также вращаться в магнитном поле, а следовательно в них будет индуцироваться электродвижущая сила (э.д.с.). Направление э.д.с. определяется по правилу “правой руки” (см. рис. 2.4). Мгновенное значение индуцируемой в проводнике обмотки э.д.с определится по закону электромагнитной индукции в виде
, (2.5)
где – линейная скорость движения проводника.
Поскольку верхняя (см. рис. 2.3) часть обмотки якоря находится под северным полюсом магнита, а нижняя часть – под его южным полюсам, а также при условии разнонаправленности тока в них, полная э.д.с. одновитковой машины определится как
. (2.6)
При повороте обмотки якоря более чем на 90° от исходного положения его верхний проводник окажется под южным полюсом. Одновременно с этим из-за действия коллектора направление тока в нем также изменится, а следовательно направление электромагнитного момента, вызывающее вращение двигателя останется неизменным. Двигатель продолжит вращаться в прежнюю сторону.
Исходя из вышесказанного, напряжение на зажимах двигателя уравновешивается э.д.с. и падением напряжения на обмотке якоря
. (2.7)
Развиваемый двигателем электромагнитный момент расходуется на преодоление механических потерь в подшипниках якоря двигателя и рабочего органа , на создание полезного момента нагрузки и на создание динамического момента, необходимого для разгона или торможения
. (2.8)
Динамический момент может быть определен по выражению
, (2.9)
где – суммарный момент инерции всех вращающихся частей электромеханической системы, приведенный к валу двигателя.
Анализ зависимости (2.9) показывает, что при разгоне и при торможении. Также следует отметить, что в установившемся режиме работы , а момент двигателя равен статическому моменту
. (2.10)
Приняв, что , где – конструктивная постоянная двигателя, а – его магнитный поток, выражения (2.4) и (2.6) можно переписать в виде
, (2.11)
. (2.12)
Подставив (2.11) и (2.12) в (2.7) получим уравнение электромеханической характеристики ДПТ
(2.13)
и уравнение его механической характеристики
. (2.14)
На рис. 2.5 приведены механические характеристики двигателя постоянного тока независимого возбуждения, построенные в соответствии с выражением (2.14). Механическая характеристика двигателя, запитанного номинальным напряжением при номинальной величине магнитного потока называется естественной. Для управления скоростным режимом работы двигателя в электро механических системах, как правило, изменяют напряжение вниз от номинального значения. При этом согласно выражению (2.14) скорость двигателя уменьшается пропорционально снижению напряжения вплоть до нуля. В случае если полярность питающего напряжения будет изменена, то двигатель начнет вращаться в другую сторону. Таким образом, возможно задавать вращение двигателя в любом необходимом направлении.
Дата добавления: 2020-10-14; просмотров: 314;