Построение гистограммы для стационарной системы.


Г - эмпирическая плотность распределения вероятностей. Задаются границы изменения интересующей характеристики. уi®[yнв], числом интервалов Ng. Определяется ширина интервала D=( yн -­ ув)/Ng.

Затем в процессе моделирования по мере появления значений уi определяется число попаданий этой случайной величины в каждый из интервалов Ri гистограммы. По этим данным вычисляется относительная частота по каждому интервалу: Gi=Ri/(N*D), где N - общее число измерений у. Площадь гистограммы равна единице, равна сумме площадей:

, т.к.

При необходимости выдвигается гипотеза о том, что эмпирическое распределение согласуется с некоторым теоретическим распределением. Эта гипотеза проверяется по тому или иному критерию. Например, при использовании критерия c2 в качестве меры расхождения используется выражение (6);

где - определяется из выбранного теоретического распределения вероятность попадания случайной величины в i-ый интервал.

(7).

Из теоремы Пирсона следует, что для любой функции распределения F(y) случайной величины упри N®¥ распределения величины c2 имеет вид:

, где z - значение случайной величины c2 ,

k=Ng-(r +1) - число степеней свободы распределения c2 . r - количество параметров теоретического распределения, Г(к/2) - гамма функция.

Функция распределения c2 табулирована. По вычисленному значению c2 и числу степеней свободы с помощью таблиц определяется вероятность Р(c2<Z). Если она превышает заданный уровень значимости С, то выдвинутая гипотеза принимается.



Дата добавления: 2019-02-08; просмотров: 675;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.032 сек.