Нелинейные разветвленные списки


Основные понятия

Нелинейным разветвленным списком является список, элементами которого могут быть тоже списки. В разделе 5.2 мы рассмотрели двухсвязные линейные списки. Если один из указателей каждого элемента списка задает порядок обратный к порядку, устанавливаемому другим указателем, то такой двусвязный список будет линейным. Если же один из указателей задает порядок произвольного вида, не являющийся обратным по отношению к порядку, устанавливаемому другим указателем, то такой список будет нелинейным.

В обработке нелинейный список определяется как любая последовательность атомов и списков (подсписков), где в качестве атома берется любой объект, который при обработке отличается от списка тем, что он структурно неделим.

Если мы заключим списки в круглые скобки, а элементы списков разделим запятыми, то в качестве списков можно рассматривать такие последовательности:

(a,(b,c,d),e,(f,g))

( )

((a))

Первый список содержит четыре элемента: атом a, список (b,c,d) (содержащий в свою очередь атомы b,c,d), атом e и список (f,g), элементами которого являются атомы f и g. Второй список не содержит элементов, тем не менее нулевой список, в соответствии с нашим определением является действительным списком. Третий список состоит из одного элемента: списка (a), который в свою очередь содержит атом а.

Другой способ представления, часто используемый для иллюстрации списков, - графические схемы, аналогичен способу представления, применяемому при изображении линейных списков. Каждый элемент списка обозначается прямоугольником; стрелки или указатели показывают, являются ли прямоугольники элементами одного и того же списка или элементами подсписка. Пример такого представления дан на рис.5.12.

Рис.5.12. Схематическое представление разветвленного списка

Разветвленные списки описываются тремя характеристиками: порядком, глубиной и длиной.

Порядок. Над элементами списка задано транзитивное отношение, определяемое последовательностью, в которой элементы появляются внутри списка. В списке (x,y,z) атом x предшествует y, а y предшествует z. При этом подразумевается, что x предшествует z. Данный список не эквивалентен списку (y,z,x). При представлении списков графическими схемами порядок определяется горизонтальными стрелками. Горизонтальные стрелки истолковываются следующим образом: элемент из которого исходит стрелка,предшествует элементу, на который она указывает.

Глубина. Это максимальный уровень, приписываемый элементам внутри списка или внутри любого подсписка в списке. Уровень элемента предписывается вложенностью подсписков внутри списка, т.е.числом пар круглых скобок, окаймляющих элемент. В списке, изображенном на рис.5.12), элементы a и e находятся на уровне 1, в то время как оставшиеся элементы - b, c, d, f и g имеют уровень 2. Глубина входного списка равна 2. При представлении списков схемами концепции глубины и уровня облегчаются для понимания, если каждому атомарному или списковому узлу приписать некоторое число l. Значение l для элемента x, обозначаемое как l(x), является числом вертикальных стрелок, которое необходимо пройти для того, чтобы достичь данный элемент из первого элемента списка. На рис.5.12 l(a)=0, l(b)=1 и т.д. Глубина списка является максимальным значением уровня среди уровней всех атомов списка.

Длина - это число элементов уровня 1 в списке. Например, длина списка на рис.5.12 равна 3.

Типичный пример применения разветвленного списка - представление последнего алгебраического выражения в виде списка. Алгебраическое выражение можно представить в виде последовательности элементарных двухместных операций вида:

< операнд 1 > < знак операции > < операнд 2 >

Рис.5.13. Схема списка, представляющего алгебраическое выражение

Выражение:

(a+b)*(c-(d/e))+f

будет вычисляться в следующем порядке:

a+b

d/e

c-(d/e)

(a+b)*(c-d/e)

(a+b)*(c-d/e)+f

При представлении выражения в виде разветвленного списка каждая тройка "операнд-знак-операнд" представляется в виде списка, причем, в качестве операндов могут выступать как атомы - переменные или константы, так и подсписки такого же вида. Скобочное представление нашего выражения будет иметь вид:

(((a,+,b),*,(c,-,(d,/,e)),+,f)

Глубина этого списка равна 4, длина - 3.



Дата добавления: 2016-07-22; просмотров: 1907;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.