Энергия и мощность в цепи синусоидального тока


Пусть на некотором участке цепи, напряжение на зажимах которого равно u, током i за время dt переносится электрический заряд dq = idt. Затрачиваемая источником энергия равна при этом dw = udq = uidt, а развиваемая мощность

p = dw/dt = ui. Эта величина называется мгновенной мощностью и определяет скорость и направление движения энергии на рассматриваемом участке. Если энергия поступает в цепь и накапливается в ней, функция w(t) возрастает, и мгновенная мощность положительна как производная возрастающей функции. Напряжение u и ток i в эти моменты времени имеют одинаковые знаки. Процесс накопления энергии в цепи наблюдается, например, при заряде конденсатора. В те моменты времени, когда u и i имеют разные знаки, мгновенная мощность отрицательна, функция w(t), определяющая энергию, поступающую в цепь, убывает, так как только убывающая функция имеет отрицательную производную. Убыль энергии в электрической цепи означает возврат ее источнику. Такая ситуация возникает при разряде конденсатора.

Энергия, поступающая в цепь, может не возвращаться к источнику, а необратимо преобразовываться в тепло или механическую работу. Количество этой энергии определяется законом Джоуля–Ленца и за время, равное периоду синусоидального тока, равно

.

Эта величина, отнесенная ко времени Т, определяет среднее значение мгновенной мощности за период и называется активной мощностью

. (2.35)

Физически активная мощность представляет собой энергию, выделяющуюся в виде тепла или механической работы в единицу времени.

Пусть ток и напряжение на входе произвольного пассивного двухполюсника описываются выражениями

, . (2.36)

Подставляя их в (2.35) и интегрируя, получаем

.

Используя соотношения между сторонами в треугольниках напряжений и токов, сопротивлений и проводимостей, можно написать цепочку формул для вычисления активной мощности:

.

Рассмотрим теперь энергетические процессы, происходящие в отдельно взятых элементах.

В активном сопротивлении напряжение и ток совпадают по фазе (j = 0); в любой момент времени их знаки одинаковы, мгновенная мощность положительна, т.е. в него постоянно поступает энергия электрического тока, преобразуясь в тепловую или механическую. Активная мощность равна:

P = UI = I2R = U2G.

В реактивных элементах угол сдвига фаз по величине равен 90° . В индуктивности, при отстающем токе, он положителен, в емкости, при опережающем токе, – отрицателен. Подставляя j = ± 90° в выражение напряжения на входе цепи (2.36), получим u = Um sin (w t ± 90° ) =± Um cos w t. При таком напряжении мгновенная мощность колеблется с двойной частотой, изменяясь по синусоидальному закону

р = ± U I sin 2w t,

т.е. дважды за полпериода меняет знак. Подстановка этого выражения в (2.35) приводит к результату: P = 0. Равенство нулю активной мощности означает, что в реактивных элементах не происходит необратимого преобразования электромагнитной энергии в тепловую и механическую.

Можно показать, что в индуктивности в течение первой четверти периода, при возрастании тока от нуля до Im, в магнитном поле индуктивности накапливается энергия . В течение следующей четверти периода, когда ток уменьшается до нуля, эта энергия из магнитного поля возвращается во внешнюю цепь.

В емкости – аналогично: в течение одной четверти периода, когда напряжение на обкладках конденсатора возрастает от нуля до Um, конденсатор заряжается, в его электрическом поле накапливается энергия: . В следующую четверть периода конденсатор разряжается, его напряжение уменьшается до нуля, и накопленная в электрическом поле энергия возвращается в цепь. Энергию, которой электрическое поле конденсатора и магнитное поле катушки обмениваются с цепью, будем называть энергией обмена.

Для энергии магнитного поля WM и электрического поля WЭ можно записать следующие формулы:

,

.

Величины и имеющие размерность мощности, называются соответственно реактивной мощностью индуктивности и реактивной мощностью емкости. К работе, совершаемой переменным током, они отношения не имеют, а являются величинами, пропорциональными энергии магнитного и электрического полей: , .

В цепи, содержащей одновременно и индуктивность и емкость, колебания энергии происходят таким образом, что в те моменты времени, когда магнитное поле индуктивности накапливает энергию, электрическое поле емкости энергию отдает, и наоборот. Т.е., когда энергия магнитного поля положительна, энергия электрического поля отрицательна. Суммарная энергия электрического и магнитного полей за четверть периода равна

,

где – реактивная мощность цепи, она пропорциональна суммарной энергии электрического и магнитного полей и может быть определена через реактивные сопротивления:

При резонансе, когда , равны реактивные мощности и и энергии и , накапливаемые в магнитном и электрическом полях. В этом случае обмен энергией между индуктивностью и емкостью происходит без участия источника.

Для вычисления реактивной мощности можно написать цепочку формул, аналогичную (2.36):

.

При анализе электрических цепей часто используется треугольник мощностей, который можно получить, умножив стороны треугольника сопротивлений на квадрат тока (рис. 2.47). Для него справедливы следующие соотношения:

, , .

Буквой , стоящей рядом с гипотенузой треугольника, обозначается полная мощность. Ее можно вычислить по одной из следующих формул:

Рис. 2.47. Треугольник мощностей

Полная мощность определяется той электрической энергией, которая вырабатывается генератором и отдается в цепь. Она характеризует габариты электрических машин и аппаратов. Величина напряжения определяет уровень изоляции – ее толщину и расстояние между токоведущими частотами, а ток – поперечное сечение проводника, условия охлаждения машины.

При = 1 полная мощность равна наибольшему значению активной мощности, которую можно получить при заданных напряжении и токе.

Единицы измерения мощности, имея одну и ту же размерность, называются по-разному. Единица активной мощности – ватт (Вт), реактивной – вольт-ампер реактивный (вар), полной – вольт-ампер (ВА).

Комплексная мощность определяется произведением комплекса напряжения и сопряженного комплекса тока:

.

Пример 2.24. Рассчитать активную, реактивную и полную мощности цепи, если напряжение и ток на ее зажимах определяются выражениями: , .

Р е ш е н и е. = 100 В, = 0,5 А, = 36,9° , 50 ВА, 40 Вт, 30 вар.

Или В, А,

ВА.

 



Дата добавления: 2020-10-14; просмотров: 400;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.