Характеристики случайных процессов
Определим в начале основные характеристики случайных величин. Пусть Х – случайная величина, т.е. совокупность всевозможных вещественных чисел x, принимающих случайное значение. Исчерпывающее описание статистических свойств Х можно получить, располагая неслучайной функцией F(x) вещественного аргумента x, которая равна вероятности того, что случайное число из X примет значение, равное или меньшое конкретного х:
(6.1)
Функция F(x) называется функцией распределения случайной величины Х. Если Х может принимать любые значения, то F(x) является гладкой неубывающей функцией, значения которой лежат на отрезке . Имеют место следующие предельные равенства:
Производная от функции распределения есть плотность распределения вероятности (или, короче плотность вероятности) данной случайной величины.
(6.2)
То есть величина есть вероятность попадания случайной величины Х в интервал .
Для непрерывной случайной величины Х плотность вероятности р(x) представляет собой гладкую функцию. Если же Х – дискретная случайная величина, принимающая фиксированные значения с вероятностями соответственно, то для неё плотность вероятности выражается как сумма дельта-функций.
(6.3)
В обоих случаях плотность вероятности должна быть неотрицательной: и удовлетворять условию нормировки:
(6.4)
Рассмотрим теперь плотность вероятности для случайных процессов. Пусть Х(t) случайный процесс, заданный ансамблем реализаций а - некоторый произвольный момент времени. Фиксируя величины , получаемые в отдельных реализациях, осуществляем одномерное сечение данного случайного процесса и наблюдаем случайную величину . Её плотность вероятности называется одномерной плотностью вероятности процесса X(t) в момент времени .
Информация которую можно извлечь из одномерной плотности вероятности, недостаточна для того, чтобы судить о характере развития реализаций случайного процесса во времени. Гораздо больше сведений можно получить, располагая двумя сечениями случайного процесса в несовпадающие моменты времени и .
Возникающая при таком мысленном эксперименте двумерная случайная величина описывается двумерной плотностью вероятности .
Естественным обобщением является n-мерное сечение случайного процесса (n>2), приводящее к n-мерной плотности вероятности .
Многомерная плотность вероятности случайного процесса должна удовлетворять обычным условиям, налагаемым на плотность вероятности совокупности случайных величин. Помимо этого, величина не должна зависеть от того, в каком порядке располагаются её аргументы (условие симметрии).
Дата добавления: 2016-07-22; просмотров: 2240;