Основные структурные элементы поверхности Земли
Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Следовательно, эти структурные элементы должны пониматься в геологическом, вернее даже в геофизическом смысле, так как определить тип строения земной коры возможно только сейсмическими методами. Отсюда ясно, что не все пространство, занятое водами океана, представляет собой в геофизическом смысле океанскую структуру, так как обширные шельфовые области, например в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу, т.е. прослеживаются до глубин примерно в 700 км.
В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.
В океанах, как структурных элементах, выделяются срединно- океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга, т.е. расширения океанского дна и наращивания новообразованной океанской коры. Следовательно, в океанах как структурах выделяются устойчивые платформы (плиты) и мобильные срединно-океанские пояса.
На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.
На территории некоторых континентов, в зоне перехода континент-океан (в геофизическом смысле) находятся окраинно-континентальные, по терминологии В.Е. Хаина, подвижные геосинклинальные пояса, представляющие собой сложное сочетание окраинных морей, островных дуг и глубоководных желобов. Это пояса высокой современной тектонической активности, контрастности движений, сейсмичности и вулканизма. В геологическом прошлом функционировали и межконтинентальные геосинклинальные пояса, например Урало-Охотский, связанный с древним палео-Азиатским океанским бассейном, и др.
Учение о геосинклиналях в 1973 г. отметило свое столетие с того времени, как американский геолог Д. Дэна ввел это понятие в геологию, а еще раньше, в 1857 г., также американец Дж. Холл сформулировал в целом эту концепцию, показав, что горно-складчатые структуры возникли на месте прогибов, ранее выполнявшихся разнообразными морскими отложениями. В силу того, что общая форма этих прогибов была синклинальной, а масштабы прогибов очень большими, их и назвали геосинклиналями.
За прошедшее столетие учение о геосинклиналях набирало силу, разрабатывалось, детализировалось и благодаря усилиям большой армии геологов различных стран сформировалось в стройную концепцию, представляющую собой эмпирическое обобщение огромного фактического материала, но страдавшую одним существенным недостатком: оно не давало, как совершенно справедливо полагает В.Е. Хаин, геодинамической интерпретации наблюдаемых конкретных закономерностей развития отдельных геосинклиналей. Устранить этот недостаток в настоящее время способна концепция тектоники литосферных плит, возникшая всего лишь 25 лет назад, но быстро превратившаяся в ведущую геотектоническую теорию. С точки зрения этой теории геосинклинальные пояса возникают на границах взаимодействия различных литосферных плит. Рассмотрим основные структурные элементы земной коры более подробно.
Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранитогнейсовых куполов или овалов - специфической формой метаморфогенной складчатости (рис. 16.1). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40 % и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов). Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены. Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи-1, возникшего в конце раннего протерозоя.
Верхний этаж платформ представлен чехлом, или покровом, полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает самое важное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникают грабены, грабенообразные прогибы - авлакогены (от греч. "авлос" - борозда, ров; "ген" - рожденный, т.е. рожденные рвом), как их впервые назвал Н.С. Шатский. Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового магматизма с континентальными толеитовыми базальтами, силлами и дайками. Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений, чаще всего начинающимся с вендского времени.
Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом.
По краям платформ, там, где они граничат со складчатыми поясами, часто образуются глубокие впадины, называемые перикратонными (т.е. на краю кратона, или платформы). Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Последние возникают над зонами глубоких разломов, крылья которых испытывают разнонаправленные движения и в чехле платформы выражены узкими выходами древних отложений чехла из-под более молодых. Углы наклона крыльев валов не превышают первых градусов. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков. Все платформенные структуры очень пологие и в большинстве случаев непосредственно измерить наклоны их крыльев невозможно.
Состав отложений платформенного чехла разнообразный, но чаще всего преобладают осадочные породы - морские и континентальные, образующие выдержанные пласты и толщи на большой площади. Весьма характерны карбонатные формации, например, белого писчего мела, органогенных известняков, типичных для гумидного климата и доломитов с сульфатными осадками, образующимися в аридных климатических условиях. Широко развиты континентальные обломочные формации, приуроченные, как правило, к основанию крупных комплексов, отвечающих определенным этапам развития платформенного чехла. На смену им нередко приходят эвапоритовые или угленосные паралические формации и терригенные - песчаные с фосфоритами, глинисто-песчаные, иногда пестроцветные. Карбонатные формации знаменуют собой обычно "зенит" развития комплекса, а далее можно наблюдать смену формаций в обратной последовательности. Для многих платформ типичны покровно-ледниковые отложения.
Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам крупных геотектонических циклов: байкальского, каледонского, герцинского, альпийского и др. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась.
Для платформ характерен и специфический магматизм, проявляющийся в моменты их тектономагматической активизации. Наиболее типична трапповая формация, объединяющая вулканические продукты - лавы и туфы и интрузивы, сложенные толеитовыми базальтами континентального типа с несколько повышенным по отношению к океанским содержанием оксида калия, но все же не превышающим 1- 1,5 %. Объем продуктов трапповой формации может достигать 1-2 млн. км3 , как, например, на Сибирской платформе. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка).
Кроме древних платформ выделяют и молодые, хотя чаще их называют плитами, сформировавшимися либо на байкальском, каледонском или герцинском фундаменте, отличающемся большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Примерами таких платформ (плит) являются: эпибайкальская Тимано-Печорская, эпигерцинская Скифская, эпипалеозойская Западно-Сибирская и др.
Геологическая деятельность рек:
Мощные водные потоки рек, расчленяющие огромные пространства суши, производят значительную эрозионную, переносную и аккумулятивную деятельность. Это наиболее динамические системы, преобразующие рельеф. Интенсивность работы рек определяется их живой силой, т. е. кинетической энергией, равной mv2/2, где m - масса воды; v - скорость течения. Последняя зависит от уклона продольного профиля и определяется по формуле Шези: v = с, где с - коэффициент, зависящий от шероховатости русла; R - гидравлический радиус, равный отношению площади живого сечения водотока к смоченному периметру; i - уклон.
Под уклоном понимается величина перепада высот, деленная на расстояние по горизонтали, на котором наблюдается этот перепад.
На интенсивности процессов в речных долинах сказывается турбулентный характер течения, когда молекулы воды движутся беспорядочно или по перекрещивающимся траекториям, наблюдаются различные завихрения, вызывающие перемешивание всей массы воды от дна до ее поверхности. Наибольшие скорости наблюдаются в приповерхностной части потока на стрежне, меньше у берегов и в придонной части, где поток испытывает трение о породы, слагающие русло. Вдоль реки скорость течения также меняется, что связано с наличием перекатов и плёсов, нарушающих равномерность уклона.
В зависимости от характера и интенсивности питания изменяются режим рек, количество и уровень воды, а также скорость ее течения. В соответствии с изменением уровня воды в реке говорят о высоком горизонте, соответствующем половодью, и низком меженном горизонте, или межени, наступающей после спада половодья. Помимо этого, в реках наблюдаются периодические паводки, соответствующие кратковременному повышению уровня воды от затяжных дождей.
Речная эрозия. Выделяют два типа эрозии:
1) донная, или глубинная, направленная на врезание речного потока в глубину;
2) боковая, ведущая к подмыву берегов и в целом к расширению долины.
Соотношение донной и боковой эрозии изменяется на разных стадиях развития долины реки. В начальных стадиях развития реки преобладает донная эрозия, которая стремится выработать профиль равновесия применительно к базису эрозии - уровню бассейна, куда она впадает. Базис эрозии определяет развитие всей речной системы - главной реки с ее притоками разных порядков. Первоначальный профиль, на котором закладывается река, обычно характеризуется различными неровностями, созданными до образования долины. Такие неровности могут быть обусловлены различными факторами: наличием выходов в русле реки неоднородных по устойчивости горных пород (литологический фактор); озера на пути движения реки (климатический фактор); структурные формы - различные складки, разрывы, их сочетание (тектонический фактор) и другие формы. В процессе регрессивной эрозии река, углубляя свое русло, стремится преодолеть различные неровности, которые со временем сглаживаются, и постепенно вырабатывается более плавная (вогнутая) кривая, или профиль равновесия реки (рис. 6.4). Считается, что этот выровненный профиль соответствует на каждом отрезке долины динамическому равновесию при данных гидрологических условиях и постоянном базисе эрозии.
Анализ развития речных долин, как в равнинных, так и в горных областях показывает, что в выработке профиля равновесия реки играют большую роль не только главный базис эрозии, но и местные, или локальные, базисы, к которым относятся различные уступы, или пороги. На месте порога, или уступа, возникают водопады, которые размывают дно уступа, а с другой стороны подмывают его основание вследствие возникающих водоворотов. В результате уступ разрушается и отступает (рис. 6.5). Так, например, суммарное отступание известного Ниагарского водопада, низвергающегося с высоты около 50 м, с 1875 г. составило около 12 км, что соответствует приблизительно скорости отступания около 1,0-1,2 м/год. Такой уступ с водопадом является локальным (местным) базисом эрозии.
Часть реки, расположенная выше уступа, будет развиваться регрессивно применительно к нему, а ниже расположенная часть реки - к главному базису эрозии. Только после уничтожения уступа развитие профиля долины будет контролироваться главным базисом эрозии. Такими же местными базисами могут быть озера, расположенные в депрессиях первичного рельефа. До тех пор, пока это озеро не будет спущено или заполнено осадками, верхняя часть реки будет развиваться применительно к озеру. Таким образом, продольный профиль реки превращается в единый только по мере выравнивания кривой продольных уклонов местных базисов эрозии.
По мере выработки продольного профиля, приближающегося к стадии динамического равновесия, закономерно изменяется и форма поперечного профиля долины. На ранних стадиях ее развития, при значительном преобладании глубинной эрозии реки вырабатываются крутостенные узкие долины, дно которых почти целиком занято руслом потока. Поперечный профиль долины представляет или каньон с почти вертикальными, иногда ступенчатыми склонами и ступенчатым продольным профилем дна, или имеет V-образную форму (по сходству с латинской буквой v) с покатыми склонами. Эта первая стадия развития реки называется стадией морфологической молодости. Такие формы особенно хорошо выражены в пределах молодых горных сооружений (Альпы, Кавказ и др.) и высоких плоскогорий, где глубина речных долин достигает сотен метров, а местами 1 - 2 км.
Боковая эрозия. По мере выработки профиля равновесия и уменьшения уклонов русла донная эрозия постепенно ослабевает и все больше начинает сказываться боковая эрозия, направленная на подмыв берегов и расширение долины. Это особенно проявляется в периоды половодий, когда скорость и степень турбулентности движения потока резко увеличиваются, особенно в стрежневой части, что вызывает поперечную циркуляцию. Возникающие вихревые движения воды в придонном слое способствуют активному размыву дна в стрежневой части русла, и часть донных наносов выносится к берегу. Накопление наносов приводит к искажению формы поперечного сечения русла, нарушается прямолинейность потока, в результате чего стрежень потока смещается к одному из берегов. Начинается усиленный подмыв одного берега и накопление наносов на другом, что вызывает образование изгиба реки. Такие первичные изгибы, постепенно развиваясь, превращаются в излучины, играющие большую роль в формировании речных долин.
1) Происхождение Земли, космогонические гипотезы:
Все космогонические гипотезы можно разделить на несколько групп: небулярные (Канта, Лапласа и др., к ним же относится и гипотеза О. Ю. Шмидта), гипотезы захвата, выброса и др. Небулярные гипотезы, а их больше всего, можно, в свою очередь разделить на две подгруппы. Согласно первой из них Солнце и все тела Солнечной системы: планеты, спутники, астероиды, кометы и метеорные тела - образовались из единого газово-пылевого, или пылевого облака. Согласно второй Солнце и его семейство имеют различное происхождение, так что Солнце образовалось из одного газово-пылевого облака (туманности, глобулы), а остальные небесные тела Солнечной системы - из другого облака, которое было захвачено каким-то, не совсем понятным, образом Солнцем на свою орбиту и разделилось каким-то, еще более непонятным образом на множество самых различных тел (планет, их спутников, астероидов, комет и метеорных тел) имеющих самые различные характеристики: массу, плотность, эксцентриситет, направление обращения по орбите и направление вращения вокруг своей оси, наклонение орбиты к плоскости экватора Солнца (или эклиптики) и наклон плоскости экватора к плоскости своей орбиты.
В связи с тем, что наш читатель более всего знаком с гипотезой О. Ю. Шмидта, мы более подробно остановимся на ней. Как утверждают небесные механики, небулярные гипотезы Канта, Лапласа и др. среди прочих имеют следующий существенный недостаток: они не объясняют, почему Солнце и планеты так неравномерно распределили между собой количество движения (момент количества движения): на долю Солнца приходится около 2% момента количества движения, а на долю планет - около 98%, хотя совокупная масса всех планет в 750 раз меньше массы Солнца.
По-видимому, желая избежать этого противоречия, Шмидт исходит в своей гипотезе из различного происхождения Солнца и планет. Но если быть последова тельным до конца, то следовало бы предположить, что раздельно возникло не только Солнце от планет, но имеют раздельное происхождение и все планеты, поскольку они также имеют различный удельный момент количества движения, т. е. количество движения на единицу массы. Если удельный момент количества движения Земли принять за 1, то планеты Солнечной системы будут иметь следующие удельные моменты количества движения:
Меркурий 0,61
Венера 0,85
Земля 1,00
Марс 1,23
Юпитер 2,28
Сатурн 3,08
Уран 4,38
Нептун 5,48
Плутон 6,09 (Левин Б.С. Происхождение Земли и планет. М. 1964, стр. 14).
Те части протопланетного газово-пылевого облака, которое когда-то якобы встретилось с Солнцем, было им захвачено на свою орбиту, эти части облака, если только последнее не вращалось (если облако вращалось, оно, по-видимому, должно было еще до встречи с Солнцем рассеяться под влиянием центробежной силы в межзвездном пространстве), должны были иметь абсолютно одинаковый удельный момент количества движения, поскольку они до захвата двигались в одном направлении и имели одинаковую скорость. И планеты тоже должны были бы иметь одинаковый удельный момент количества движения, если бы они произошли согласно гипотезе Шмидта. А они имеют его весьма и весьма различным. Почему? Каким образом Меркурий передал свой избыток количества движения Плутону, а Венера, Земля и Марс - Нептуну или Урану и т. д.? Гипотеза Шмидта на этот вопрос ответа не дает.
Неубедительно объясняется в гипотезе Шмидта и вопрос о закономерности в межпланетных расстояниях. По Шмидту, эти расстояния растут в арифметичес кой прогрессии (почему?), но почему-то планеты земной группы имеют одну разность - 0,20, а дальние планеты - другую - 1,00. Гипотеза не объясняет, почему между Марсом и Юпитером образовалась брешь, в которой вместо пресловутой планеты Фаэтон обращается вокруг Солнца большое количество астероидов. Гипотеза не объясняет, почему Плутон так ╚близко╩ находится около Нептуна, что время от времени пересекает его орбиту.
Шмидт пытается объяснить межпланетные расстояния с помощью удельного момента количества движения планет, но ведь последний сам требует своего объяснения.
Слабым местом гипотезы Шмидта является объяснение распределения массы вещества протопланетного облака между планетами. В самом деле, наибольшая масса облака, обращающегося вокруг Солнца в форме диска (баранки), должна находиться в центре его сечения. Казалось бы, и наиболее массивная планета должна была образоваться именно в середине ряда планет, по обе стороны от нее должны образоваться менее массивные планеты.
Если поперек сечения газово-пылевого диска Шмидта провести линию, которая бы симметрично рассекала его на две равные по длине части, то половина планет с половинной суммарной массой вещества должна бы находиться по одну сторону от симметричной линии, а другая половина - по другую сторону.
Шмидт объясняет это тем, что дальние планеты, очевидно, пользуясь своей отдаленностью от Солнца, разбросали вещество протопленного диска в межпланетное пространство, преимущественно на периферию Солнечной системы. Если не считать Урана, который возник как раз в центре сечения диска, то по одну сторону центра (или симметричной линии) диска образовалось шесть планет с совокупной массой в 415 масс Земли, а по другую сторону - всего лишь две планеты с массой в 17 масс Земли. Трудно согласить ся с тем, что Нептун расшвырял такое огромное количество вещества - около 400 масс Земли. К тому же гипотезе Шмидта противоречит тот факт, что Нептун имеет большую массу, чем Уран, а Марс имеет меньшую массу, чем Земля и Венера. По Шмидту, должно быть все наоборот.
Ни в какие рамки гипотезы Шмидта не укладывается тот факт, что третья часть спутников планет Солнечной системы имеет обратное по отношению к Солнечной системе направление обращения. Это один из крупнейших в Солнечной системе спутник Нептуна Тритон, затем спутник Сатурна Феба, четыре внешних небольших спутника Юпитера и пять спутников Урана (последние по отношению к Урану обращаются в прямом направлении).
Согласно гипотезе Шмидта, все небесные тела Солнечной системы, кроме Солнца, образовались из одного облака, которое после захвата его Солнцем, в полном соответствии с законом сохранения количества движения, обращалось вокруг него в одном направлении (прямом). Но тогда и все тела Солнечной системы, происшедшие из этого газово-пылевого облака, также должны обращаться вокруг Солнца в этом же направлении.
Представьте себе, что Вы плывете по реке вниз по течению. Подплывая к дельте реки, где русло разделяется на десяток рукавов, Вы проплываете по одному из них в море и не замечаете в этом ничего необычного. Но что бы Вы сказали, если бы кто-то взялся утверждать, что в одном (или в нескольких) из рукавов реки, в ее дельте вода течет вспять, и что по этому рукаву в море проплыть нельзя? Именно в таком положении находится гипотеза Шмидта, как и все небулярные гипотезы, утверждающая, что все небесные тела Солнечной системы, как те, которые обращаются вокруг центрального тела (Солнца или планеты) в прямом направлении, так и те, которые обращаются против ╚течения╩, т. е. в обратном направлении, произошли из одного протопланетно го облака, которое и до захвата его Солнцем, и после захвата двигалось в одном (прямом) направлении. Это самым вопиющим образом противоречит закону сохранения количества движение, который в данном контексте можно назвать законом сохранения количества и направления движения.
С точки зрения закона сохранения количества движения гипотезе Шмидта, как и всем небулярным гипотезам, противоречит и тот факт, что половина планет Солнечной системы имеют большие наклоны плоскости экватора к плоскости своей орбиты, которые превышают 23° у Земли, Марса, Сатурна и Нептуна, а у Урана наклон равен 98°. Если бы планеты образовались из одного облака, они бы имели одинаковое наклонение своих орбит к плоскости экватора Солнца и не имели бы наклона плоскостей своих экваторов к общей плоскости своих орбит. Если же предположить, что эти характеристики со временем изменились, то эти изменения были бы более или менее одинаковыми, равнозначными.
2. Гипотезы захвата
Как мы видим, небулярная гипотеза Шмидта, а равным образом и все небулярные гипотезы, имеют целый ряд неразрешимых противоречий. Желая избежать их, многие исследователи выдвигают идею индивидуального происхождения как Солнца, так и всех тел Солнечной системы. Это так называемые гипотезы захвата.
Согласно этим гипотезам, время от времени в пределы Солнечной системы входят небесные тела извне, т. е. из других частей Галактики, из других галактик и из межгалактического пространства. Под влиянием различных факторов: притяжения Солнцем и планетами, столкновения с другими блуждающими небесными телами или астероидами и кометами Солнечной системы, либо при прохождении через газово-пылевое облако, в котором как раз находится Солнечная система при своем обращении вокруг центра Галактики - под влиянием этих факторов инородные тела тормозятся и, погасив скорость своего движения, становятся пленниками Солнца или одной из планет Солнечной системы, перейдя с гиперболической орбиты на эллиптическую.
Однако, избежав целого ряда противоречий, свойственных небулярным гипотезам, гипотезы захвата имеют другие, специфические противоречия, не свойственные небулярным гипотезам. Прежде всего, возникает серьезное сомнение, может ли крупное небесное тело, такое, как планета, особенно планета-гигант, так сильно затормозиться, чтобы перейти с гиперболической орбиты на эллиптическую. Очевидно, ни пылевая туманность, ни притяжение Солнца или планеты не могут создать такой силы тормозящий эффект.
Остается столкновение. Но не разлетятся ли вдребезги на мелкие куски две планетозимали при своем столкновении, так сказать, лоб в лоб, центрально? Ведь под влиянием притяжения Солнца, вблизи которого должно произойти столкновение, они разовьют большие скорости, в десятки км в секунду. Можно предположить, что обе планетозимали рассыплются на осколки и частично упадут на поверхность Солнца, а частично умчатся в космическое пространство в виде большого роя метеоритов. И только, быть может, несколько осколков будут захвачены Солнцем или одной из его планет и превратятся в их спутники - астероиды.
Второе возражение, которое выдвигают оппоненты авторам гипотез захвата, относится к вероятности такого столкновения. По расчетам, выполненным многими небесными механиками, вероятность столкновения двух крупных небесных тел вблизи третьего, еще более крупного небесного тела, ничтожна мала, так что одно столкновение может произойти за сотни миллионов лет. А ведь это столкновение должно произойти очень ╚удачно╩, т. е. столкнувшиеся небесные тела должны иметь определенные массы, направления и скорости движения и столкнуться они должны в определенном месте Солнечной системы. И при этом они должны не только перейти на почти круговую орбиту, но и остаться целыми и невредимыми. А это, согласитесь сами, нелегкая задача для природы.
Кроме того, можно поставить и такой вопрос авторам гипотез захвата: а имеются ли в космическом пространстве блуждающие, ╚бездомные╩ небесные тела, да еще такие крупные, как планеты-гиганты? Если имеются, то почему они до сих нор не столкнулись с одной из многочисленных в Галактике звезд, мимо которых они двигались в течение миллиардов лет? И как возникли блуждающие планеты-гиганты в космическом пространстве? Можно предположить, что скорее всего все небесные тела мирового пространства движутся по эллиптическим орбитам вокруг того иди иного центрального тела: планеты, звезды, центра галактики и т. д. А это в огромной степени уменьшает вероятность столкновения двух крупных небесных тел вблизи третьего, еще более крупного тела.
Но допустим все же, что захват произошел. Тогда возникает ряд вопросов. Почему все захваченные планеты и большинство других небесных тел Солнечной системы обращаются вокруг Солнца в одном направлении и почти в одной плоскости? Почему они имеют почти круговые орбиты? Почему вблизи Солнца располагаются небольшие планеты земной группы, а вдали - планеты-гиганты? Почему в межпланетных расстояниях имеется определенная закономерность? Почему одни планеты вращаются вокруг своей оси в прямом направлении, а другие (Венера, Уран) - в обратном? Гипотезы захвата не дают ответа на эти вопросы, по крайней мере на все.
Что же касается захвата блуждающих планетозималей без столкновения, за счет одной лишь силы гравитационного притяжения (при помощи третьего тела), то такой захват либо невозможен, либо его вероятность ничтожна мала, настолько мала, что такой захват можно считать не закономерностью, а редчайшей случайностью. А между тем в Солнечной системе имеется большое количество крупных тел: планет, их спутников, астероидов и больших комет, что опроверга ет гипотезы захвата.
3. Другие гипотезы
Помимо гипотез захвата и небулярных гипотез существуют гипотезы, согласно которым планеты и другие небесные тела Солнечной системы образовались в результате выбросов или отрыва от Солнца части его вещества, то ли при вспышке (новой, сверхновой), то ли в результате быстрого вращения в прошлом Солнца вокруг своей оси.
Но небесные механики доказали, что если в каком-то месте с поверхности Солнца произойдет выброс, то выброшенное вещество либо уйдет от Солнца в межзвездное пространство по гиперболической орбите и рассеется, либо, если оно будет двигаться по эллипсу, облетит вокруг Солнца и упадет на него в том же самом месте. Образоваться же из этого сгустка газа планеты не могут. А если бы планета, хотя бы одна, вопреки расчетам небесных механиков, все же образовалась, то она, надо полагать, состояла бы из газов (водорода и гелия) которые образуют внешнюю оболочку Солнца и других звезд. А откуда же в планетах силикатная компонента - горные породы и металлы?
Кроме того, гипотезы образования планет из солнечного вещества не в состоянии объяснить, почему третья часть спутников планет Солнечной системы обращается по своим орбитам в обратном, по отношению к Солнечной системе, направлении; почему половина планет Солнечной системы имеет большие наклонения плоскостей экваторов к плоскостям своих орбит; почему орбиты планет являются почти круговыми; почему одни планеты вращаются вокруг своей оси в прямом направлении, а другие в обратном т. д.
Органическая жизнь в мировом океане, морские органогенные отложения:
По условиям обитания и образу жизни морские организмы подразделяются на три основных группы
- планктон
- нектон
- бентос.
Из них наибольшее значение в осадкообразовании имеют планктон и бентос.
Планктонные организмы обитают в поверхностном слое воды на глубинах 100-200 м.
I) фитопланктон: диатомовые водоросли с кремнистым панцирем и одноклеточные известковые водоросли;
2) зоопланктон: (фораминиферы и радиолярии). Птероподы (морские бабочки) с известковой раковиной.
Нектонные организмы – рыбы, головоногие моллюски, морские млекопитающие.
Бентосные организмы: подразделяются на две группы:
1) бентос подвижный – моллюски, морские ежи, морские звезды, черви и др. Развит на небольших глубинах дна шельфовой зоны;
2) бентос прикрепленный – колониальные кораллы, известковые водоросли, мшанки и др., Наибольшее развитие имеют в области шельфа на глубинах от первых метров до 50-80 м.
бактерии играют огромную роль
- в создании физико-химических условий водной среды
- в создании новых соединений,
- в качестве катализаторов реакций, особенно в процессе перерождения осадка в осадочные горные породы.
Развитие органического мира тесно связано с рельефом дна
выделяются зоны, каждая из которых характеризуется определенной фауной и флорой и особенностями осадконакопления.
1) прибрежная, или литоральная (приливно-отливная) зона, подверженная сильному воздействию волн. Встречаются организмы камнеточцы, крепко прикрепленные ко дну,
2) сублиторальная, или неритовая зона, соответствующая области шельфа, где создаются благоприятные условия для развития большого числа разнообразных видов морских организмов;
3) батиальная зона. Отвечает континентальному склону и его подножью. В осадках присутствуют главным образом раковины отмерших организмов, живущих в поверхностной части вод океанов;
4) абиссальная зона. Соответствует ложу Мирового океана. Субабиссальная – глубоководным желобам. Существуют лишь высокоспециализированные организмы, не требующие растительной пищи.
Исключение составляют районы выходов на дне термальных вод.
гигантские двустворчатые моллюски, крабы, актинии, губки и др..
Влияние температурного режима на развитие органической
в морях Малайского архипелага развито около 40 000 видов, а в море Лаптевых - около 400.
Влияние солености
Средиземное море (7000 видов), Черное (1200) и Азовское (100).
Сообщество представителей органического мира, объединенные единством условий обитания образуют биоценоз.
Массове посмертное захоронение – танатоценоз.
2) Солнечная система:
Галактика состоит из звёзд, космической пыли, различных типов газов и пустого пространства.
В самом центре, вероятно, есть большая чёрная дыра.
Примерно двести миллиардов звёзд,
Диаметр – 100 000 световых лет.
Солнце, планеты, астероиды, кометы, метеорные тела, потоки элементарных частиц (солнечный ветер)
Схематическое изображение Солнечной системы. Планетные орбиты даны в масштабе.
Пунктиром показана часть орбиты каждой планеты, которая лежит ниже плоскости орбиты Земли (если смотреть с северного полюса мира). à
Солнце – желтый карлик
99, 87% массы Солнечной системы
планеты земного типа (Меркурий, Венера, Земля, Марс) и
планеты-гиганты (Юпитер, Сатурн, Уран, Нептун).
Карликовые плане
ты (Церера, Плутон, Эрида, Макемаке)
Пояс Койпера. В этой области расположено большое количество малых тел Солнечной Системы (реликтов времён образования Солнечной системы), а также как минимум четыре карликовых планеты: Плутон, Хаумеа, Макемаке и Эрида. В отличие от пояса астероидов, тела пояса Койпера состоят в основном из замерзших летучих веществ (метановых, аммиачных и водных «льдов»).
Астероиды – диаметр от 1 до 500 км.
Паллада и Веста около 500 км.
Количество (400 000, предполагается 1,5 млн), общая масса (меньше 1/1000 Земли), вращение (скорость, ориентировка)
Кента́вры — группа астероидов, находящихся между орбитами Юпитера
Дата добавления: 2016-07-18; просмотров: 3286;