Основные неполадки, встречающиеся при обслуживании расходомеров, и их устранение
№ | Неполадки | Вероятные причины | Способы устранения |
1. 1 | Дифманометр включен в работу, но перо стоит на «0» линии диаграммы. | Не закрыт уравнительный вентиль. Не открыт вентиль у прибора или С.У. | Закрыть уравнительный вентиль. Открыть вентили. |
2. 2 | Показания прибора занижены, непостоянны. | В соединительных линиях имеются неплотности Пропускает вентиль. | Устранить неплотности. Подтянуть накидную гайку. |
3. | Не работает часовой механизм | Повреждение | Сдать часовой механизм в ремонт. |
4. 4 | Перо не пишет | Засорение канала, слабое прилегание пера к диаграмме | Прочистить канал специальной проволочкой, диаметром не более 0,1мм, и промыть спиртом, слегка подтянуть рычаг пера. |
5. 5 | Значительное расхождение между прямым и обратным ходом пера. | Затирание пера об диаграмму. | Ослабить нажим пера на диаграмме |
6. б | Часовой механизм работает, но не вращает диаграмму. | А) Ослабление затяжки винта скрепляющего диаграмму с осью держателя. Б) Плохое закрепление диаграммы. | А) затянуть винт. Б) закрепить диаграмму. |
7. 7 | Перо манометрической части не реагирует на изменение измеряемого давления. | А) Свободное проворачивание пера на оси Б) Засорение подводящей линии. | А) Отсоединить штуцер от импульсной линии поставить перо на «0» и закрепить. Б) Продуть подводящую линию. |
8. 8 | Показания манометрической части не соответствует действительным значениям давления, не постоянны. | Смещение пера, в которое оно было поставлено при тарировке. | Отсоединить штуцер от импульсной линии и установить перо на «0» |
5. Меры безопасности при обслуживании эксплуатационных скважин
Билет № 10
1. Низкотемпературная сепарация, назначение в добыче конденсата
На газовых и газоконденсатных месторождениях в основном применяют три способа обработки газа: низкотемпературную сепарацию (НТС), абсорбцию и адсорбцию.
Низкотемпературная сепарация - это комплекс технологических процессов, направленных на охлаждение продукции скважины до нужных температур с последующей ее сепарацией.
Охлаждают продукцию скважины для того, чтобы сконденсировались тяжелые углеводороды (конденсат) и пары воды. После перехода конденсата и воды в жидкое состояние газожидкостную смесь сепарируют, отделяя жидкость от газа. При сепарации от газа отделяются также механические (твердые) примеси и вводимые в поток ингибиторы коррозии и гидратообразования. Таким образом, назначение НТС - извлечение конденсата, осушка и очистка газа от механических примесей. НТС обеспечивает подачу кондиционного газа в МГ и добычу нестабильного конденсата.
2. Назначение освоения скважин, способы освоения
После вскрытия продуктивного пласта одним из указанных методов следующей стадией подготовки к эксплуатации является ее освоение: вызов притока газа или пластовой жидкости из пласта, очистка забойной зоны и обеспечение условий, при которых продуктивный пласт начинает отдавать газ в необходимом объеме. Процесс освоения скважины заканчивается проведением полного комплекса исследований, в том числе исследований по оценке дебитов и фильтрационных параметров каждого работающего интервала пласта и всей продуктивной характеристики скважины.
Положение башмака колонны НКТ должно быть таким, чтобы скорости потоков газа, движущихся вниз по затрубному пространству и вверх в колонне обсадных труб, были равны у башмака колонны НКТ, чтобы скорость газа на входе в колонну НКТ была больше минимально необходимой для выноса твердых частиц и жидких капель критического диаметра, чтобы высота столба жидкой или песчано-глинистой пробки в колонне обсадных труб была минимальна.
Положение башмака колонны фонтанных труб в скважине существенно влияет на:
1. отработку продуктивных горизонтов в многопластовом неоднорожном по толщине пласта месторождении;
2. высоту образующейся песчано-глинистой пробки при освоении и эксплуатации скважин;
3. высоту столба жидкости в НКТ и затрубье;
4. очередность обводнения по высоте многопластовых месторождений;
5. сопротивление потоков газа, двигающегося сверху вниз и снизу вверх к башмаку колонны НКТ;
6. коэффициенты фильтрационного сопротивления А и В.
Возбуждение скважины состоит в понижении давления, создаваемого столбом жидкости (промывочный раствор или вода), на забое до давления меньше пластового.
Понижение давления на забое при освоении скважины достигается путем:
замены промывочной жидкости водой. Если пласт не возбуждается, воду заменяют более легким раствором, например, нефтью, или в скважину нагнетают воду и воздух (или газ); снижением уровня жидкости в скважине. Жидкость в стволе скважины оказывает на пласт давление
,
где — высота столба жидкости в м (до верхних перфорационных отверстий); — удельный вес жидкости в тс/м3.
При неизменном удельном весе раствора в скважине для обеспечения условий можно снизить его уровень
.
Приток газа в скважину начнется в тот момент, когда гидростатическое давление столба жидкости в стволе станет меньше пластового. Это давление можно понизить заменой жидкости в колонне другой жидкостью с меньшей плотностью (например, буровой раствор можно последовательно заменять водой, затем нефтью или газожидкостной смесью) или понижением высоты столба жидкости в скважине путем отбора ее с помощью тех или иных технических средств. На практике в различных условиях применяют оба способа.
Во многих случаях применяют компрессорный способ вызова притока газа. При этом способе в затрубное пространство с помощью передвижных компрессоров закачивают воздух пли газ, который вытесняет жидкость.
Скважины можно осваивать методом «раскачки». При данном методе первоначально создается давление газа или воздуха в затрубном пространстве, вследствие чего часть жидкости из скважины через фонтанные трубы будет выброшена на поверхность. После прекращения истечения жидкости из фонтанных труб затрубное пространство резко соединяют с атмосферой. Затем напорную линию от компрессора или газопровода присоединяют к фонтанным трубам, вновь создавая давление. В результате нескольких таких «раскачек» давление столба жидкости на забой скважины станет меньше пластового и скважина начнет фонтанировать.
Для освоения скважин также используют газ, который подводится по газопроводу от уже работающей скважины.
Перед освоением скважину тщательно промывают до нижней отметки забоя для удаления осадка глинистого раствора в нижней части фильтра, так как в противном случае после ее освоения эксплуатируется только верхняя часть вскрытого интервала продуктивного пласта. Примером может служить начальный период эксплуатации скважин Ленинградского месторождения Краснодарского края.
Если в жидкости содержится значительное количество твердых примесей, в процессе освоения скважин недопустима их остановка до полного удаления этих примесей и перехода па фонтанирование чистым газом. В противном случае в стволе может образоваться пробка и не исключен прихват фонтанных труб. Например, в процессе освоения скважины №42 Шебелинского месторождения выносилось большое количество глинистого раствора. Не дождавшись продувки скважины до получения чистого газа, освоение ее было остановлено, в результате чего образовалась пробка, на ликвидацию которой было затрачено несколько месяцев.
После возбуждения скважины и очистки забоя и призабойной зоны от промывочной жидкости и других примесей скважину продувают с выпуском газа в атмосферу. Время этого процесса колеблется от нескольких часов до нескольких суток и зависит от количества выносимых примесей и их характера. Для скважин, в которых возможен интенсивный вынос породы, продолжительность процесса при высоких депрессиях должна быть минимальной. Дебит газа при продувке зависит от характеристики пласта и состояния надземного оборудования.
Для очистки призабойной зоны более эффективна периодическая продувка до получения чистого газа без примесей. В некоторых случаях (при опасном разрушении призабойной зоны) продувку осуществляют через штуцера, увеличивая последовательно диаметр их.
Обычно со временем дебит газа и давление на устье скважины при продувках и неизменном диаметре штуцера растут по мере очищения призабойной зоны. Уменьшение же дебита и давлений на устье свидетельствует о засорении забоя. В этом случае следует немедленно прекратить продувку. Количество примесей, выносимых из пласта, и характер их изменения во времени определяют с помощью сепарационных передвижных установок, которые устанавливают после предварительной непродолжительной продувки. Полезно также периодически проверять состояние забоя, измеряя его глубину специальной желонкой.
На завершающей стадии разработки месторождений, когда пластовое давление значительно ниже гидростатического, эффективность этого процесса снижается. Кроме того, при продувках теряется много газа. Поэтому этот способ, как регулярное средство борьбы со скоплением примесей, применять не желательно. На этой стадии разработки для удаления жидкости с забоя скважины применяют плунжерный лифт и поверхностно-активные вещества (ПАВ) типа ОП-5, ОП-7 и другие, которые успешно используют на промыслах Краснодарского края.
3. Схема обвязки устья скважин на ПХГ, их преимущества и недостатки.
4. Переносные приборы контроля загазованности помещений, их устройство и порядок измерения. Единицы измерения загазованности.
5. Техника безопасности и правила проведения огневых работ
Билет № 11
1. Кристаллогидраты., условия образования, методы борьбы и их предупреждения. Точка росы.
2. Методы поддержания пластового давления
3. Требования, предъявляемые к запорной арматуре, назначение уплотнительной смазки.
4. Электротравма, действие электрического тока на организм человека, значения тока.
5. Первая помощь при ранении, ушибах.
Билет № 12
1. Технологический режим работы скважин.
В процессе добычи газа из газовой залежи скважины, шлейфы, сепараторы, теплообменники, абсорберы, десорберы, турбодетандеры, компрессоры и другое оборудование промысла работает на определенном технологическом режиме.
Технологическим режимом эксплуатации газовых скважин называется рассчитанное изменение во времени дебита, давления, температуры и состава газа на устье скважины при принятом условии отбора газа на забое скважины. Условием отбора газа на забое скважины называется математическая запись фактора, ограничивающей дебит скважины при ее эксплуатации.
В предыдущей главе отмечалось, что технологический режим эксплуатации скважин зависит от типа газовой залежи (пластовая, массивная), начального пластового давления и температуры, состава пластового газа, прочности пород газовмещающего коллектора и других факторов. Он устанавливается по данным режимных исследований скважин с использованием специального подземного и наземного (поверхностные породоуловители, измерители интенсивности коррозии) оборудования и приборов (нейтронный, акустический, плотностный каротаж, шумомеры, глубинные дебитомеры, измерители давления и температуры).
В практике эксплуатации газовых скважин на различных месторождениях газ отбирают при следующих условиях на забое скважин.
1. Режим постоянного градиента на забое скважины
Режим постоянного градиента характерен для условий эксплуатации залежи, приуроченной к относительно неплотным породам, способным разрушаться при достаточно больших отборах газа из скважины. Во избежании этого скважину следует эксплуатировать при градиенте давления на забое менее допустимого. При определении допустимого градиента надо учитывать следующих два момента:
На месторождениях с рыхлыми коллекторами в ряде случаев из-за неправильного выбора глубины спуска и диаметра насосно-компрессорных труб отсутствие выхода песка на поверхность ещё не является подтверждением правильности выбора величины градиента. Кроме того, разрушение пласта при величине градиента, превышающего его допустимое значение, при котором не происходит разрушения, не является столь опасным, как это кажется на первый взгляд, так как для каждого значения заданного градиента существует область возможного разрушения, что приводит при значениях градиентов, превышающих допустимую величину, вначале к интенсивному выносу песка с последующему снижению его количества. Для заданной устойчивости коллектора нетрудно определять радиус зоны разрушения для различных величин градиента на забое.
При установлении технологического режима работы скважин по разрушению коллекторов, как правило, отсутствуют данные, позволяющие оценить устойчивость коллекторов. Поэтому не обоснованная величина градиента давления приводит к большим погрешностям и, следовательно, либо к искусственному занижению производительности скважин, либо к накоплению песчано-глинистых пробок против продуктивного интервала.
2. Режим постоянной депрессии на пласт
Режим постоянной депрессии устанавливается при различных факторах, к которым относятся: близость подошвенной и контурной воды; деформация коллектора при значительных депрессиях; условия смятия колонны; возможность образования гидратов в пласте и стволе скважины и др.
В отличии от режима постоянного градиента, ограничиваемого величиной устойчивости пород к разрушению, пределы, ограничивающие величину депрессии, могут быть определены аналитическим путём независимо от того, по какому из факторов( подошвенная или контурная вода, деформация пласта, гидраты и т.д.) выбирается постоянная депрессия. Кроме того, в отличие от режима постоянного градиента режим постоянной депрессии на пласт по ряду факторов (подошвенная или контурная вода, гидраты др.) является переменной величиной в процессе разработки. Так, при наличии подошвенной воды сначала устанавливается величина допустимой депрессии в зависимости от вскрытой и газоносной мощности пласта, пластового давления и плотности воды и газа на данный момент времени. Но так как величина пластового давления, плотность воды и газа, а также положение ГВК являются переменными во времени, то устанавливаемая величина допустимой депрессии на пласт является функцией времени в процессе разработки. Изменение величины допустимой депрессии при газовом режиме является линейной функцией пластового давления. Если величина депрессии установлена исходя из возможной деформации пласта, то эта величина является слабо переменной величиной во времени и её можно сохранить постоянной достаточно длительное время. Снижение депрессии приведёт в этом случае не к существенным изменениям осложнениям, а просто к некоторому изменению производительности скважин.
Аналогичные расчеты можно повести и при образовании гидратов. В целом режим постоянной депрессии несущественно отличается от режима постоянного градиента, и расчет основных показателей практически одинаков. В ряде случаев допустимая депрессия на скважинах устанавливается с самого начала с целью получения максимально возможного дебита. Иногда предельно допустимая депрессия хотя и устанавливается с самого начала эксплуатации, но достигается в процессе разработки, что связано с конструкцией скважин, устьевыми условиями и т.д. Этот случай близок к режиму постоянного дебита.
3. Режим постоянного забойного давления ( ). Данный режим встречается довольно редко и в основном используется тогда, когда дальнейшее его снижение нежелательно из-за выпадения конденсата при разработке газоконденсатных месторождений. В отличии от предыдущих режимов режим постоянного забойного давления является наихудшим вариант с точки зрения темпа снижения производительности скважин. Эксплуатация газовых скважин на режиме при рз=const характеризуется резким уменьшением во времени расхода газа, из-за чего необходимо прогрессивно увеличивать число скважин для поддержания заданного отбора газа с месторождения. Режим постоянного забойного давления является временным (особенно при наличии газового режима залежи), и через определённый период эксплуатации требуется замена установленной величины на новое, более низкое значение или переход от указанного режима на какой-нибудь другой.
4. Режим постоянного дебита. ( ). Этот режим наиболее выгоден, если величина дебита при этом соответствует максимальным способностям пласта и скважины. Режим постоянного дебита устанавливается при отсутствии опасности прорыва подошвенных и контурных вод, разрушения пласта (хотя бы до определённого предела, с которого начинается разрушение), превышения допустимой величины скорости потока. Это практически возможно для крепких коллекторов до достижения определённой величины градиента на забое или величины устьевого или забойного давлений при заданной конструкции скважины и системы сбора, осушки и очистки газа. Режим постоянного дебита на определённой стадии разработки, особенно вначале, может быть установлен при наличии коррозии забойного оборудования и насосно-компрессорных труб, наличия жидкостных или песчаных пробок и т.д. Величина дебита при этом режиме устанавливается темпом (скоростью) коррозии, пропускной способностью забойного оборудования, скоростью потока, обеспечивающей вынос жидкости и твердых частиц, потенциальной отдачей пласта и наземными условиями.
Дебит выбирают с таким расчётом, чтобы не наблюдалось опасной вибрации оборудования на устье скважины. При этом наблюдается рост депрессии в пласте и с течением времени она достигает значительной величины. При достижении максимально допустимого значения депрессии необходимо для скважины устанавливать другой технологический режим, н.п. y=const или Dр=const, при котором не произойдет осложнений.
5. Режим постоянной скорости фильтрации на забое. Этот режим применяют в том случае, если имеется опасность разрушения несцементированного коллектора, а также в случае значительного выноса с забоя и призабойной зоны глинистого раствора и твердых частиц, если прискважинное оборудование не в состоянии эффективно очистить струю газа. Данный режим наилучшим образом соответствует оптимальным условиям работы первой ступени сепарации. Если режим постоянного дебита отчасти соответствует конструкции скважины, то режим постоянной скорости фильтрации в полной мере относится к призабойной зоне пласта, точнее к стенке скважины.
6. Режим постоянного градиента по оси скважины
Указанный режим применяется в крепких коллекторах при наличии подошвенной воды.
7. Режим постоянной скорости газа на устье. Если в составе пластового газа имеются компоненты, вызывающие коррозию колонны НКТ и оборудования устья скважины (СО2, кислоты жирного ряда), фактором, ограничивающим дебит скважины, служит допустимая линейная скорость коррозии. Условием отбора газа будет максимально допустимая скорость газа в верхнем поперечном сечении колонны НКТ, при которой линейная скорость коррозии имеет допустимое значение. Экспериментально установлено, что при скорости газового потока меньше 11 м/с линейная скорость коррозии, обусловленной наличием СО2 не превышает 0.1 мм/год.
Для поддержания заданного условия отбора газа на забое или устье скважины во время эксплуатации необходимо на головке скважины при индивидуальном регулировании или на групповом пункте сбора и подготовки газа при групповом методе регулирования скважин изменять дебит или давление газа в соответствии с расчетом.
Изменение дебита (давления) осуществляется при помощи различных технических средств:
· нерегулируемыми штуцерами постоянного или переменного диаметра;
· регулируемыми штуцерами;
· регуляторами давления;
· расширительными машинами.
Следует отметить, что режим постоянной скорости потока на устье приводит к резкому снижению дебита скважины. Выбор более эффективного технологического режима при наличии агрессивных компонент связан с необходимостью применения труб с коррозийно-стойким покрытием, бурением скважин большого диаметра (с целью замены фонтанных труб на трубы большего диаметра в процессе разработки), а также использованием ингибиторов коррозии.
В условиях образования песчаной пробки, столба жидкости или гидратообразования технологический режим, обусловленный определённой скоростью на устье, может оказаться практически непригодным. Поэтому при необходимости выбора режима с постоянной скоростью потока необходимо проверять возможность образования гидратов и пробок в стволе скважины.
2. Вентили, их типы, назначение, устройство, принцип действия, техническое обслуживание.
Вентили
К вентилям относят запорную арматуру с поступательным перемещением затвора в направлении, параллельном потоку транспортируемой среды. Затвор, как правило, перемещается при помощи пары винт - ходовая гайка.
В случаях, когда к надежности и герметичности перекрытия прохода предъявляются высокие требования, широко применяют вентили для перекрывания потоков газообразных или жидких сред в трубопроводах с диаметром условного перехода до 300 мм при рабочих давлениях до 2500 кг/см и t° сред от -200°С до +450°С.
По сравнению с другими видами запорной арматуры вентили имеют следующие преимущества:
1. возможность работы при высоких перепадах давления на золотнике и при больших рабочих давлениях;
2. простота конструкции, обслуживания и ремонта при эксплуатации;
3. меньший ход золотника, необходимый для полного перекрытия прохода;
4. относительно небольшие габаритные размеры и масса;
5. применяется при высоких и сверхнизких температурах рабочей среды;
6. герметичность перекрытия прохода;
7. использование в качестве регулирующего органа;
8. размещение на трубопроводе в любом положении (вертикально или горизонтально);
9. исключение возможности возникновения гидравлического удара.
Конструкция всех вентилей характеризуется высоким гидравлическим сопротивлением, большой строительной длиной, подачей среды только в одном направлении, определенном конструкцией вентиля.
3. Принцип измерения расхода газа по методу переменного перепада давления.
Дата добавления: 2016-07-18; просмотров: 3344;