Анализ оптимального решения
Модели оптимизации в реальных задачах могут содержать очень много переменных и параметров, которые невозможно эффективно корректировать без специального исследования. Числовые характеристики модели меняются в зависимости от внешних условий и зачастую достаточно быстро. В этой связи анализ устойчивости оптимального плана играет особую роль в организации управления экономическими объектами, принятии решений в критических ситуациях. Оказывается, что существует определенный интервал устойчивости, в котором изменение целевых коэффициентов не приводит к изменению оптимального решения. В границах этого интервала можно без риска для прибыли целенаправленно менять значения параметров.
Отчет по устойчивости
В процессе поиска оптимального решения MS Excel формирует по желанию пользователя отчеты по результатам, по устойчивости и по пределам. Для вывода отчетов в окне «Результаты поиска решения» следует указать типы нужных отчетов: «Результаты», «Устойчивость» и/или «Пределы». В результате MS Excel создаст дополнительные листы «Отчет по результатам», «Отчет по устойчивости» и «Отчет по пределам», анализируя которые, пользователь может подобрать такие параметры модели, которые наилучшим образом соответствуют эффективной организации производства.
В отчете по устойчивости первая таблица «Изменяемые ячейки» содержит информацию о диапазоне изменения целевых коэффициентов, в пределах которого оптимальные значения переменных не меняются. В таблице «Ограничения» отчета об устойчивости установлены границы диапазона для величины ресурсов. При варьировании ограничений на ресурсы в указанном диапазоне оптимальный план будет непрерывно изменяться (значение целевой функции также будет меняться), однако при этом будет оставаться неизменной теневая цена ресурса — важнейшая характеристика оптимального решения, которая связана с понятием двойственной задачи, которая может быть сформулирована для любой задачи линейного программирования. Независимо от прикладной интерпретации, оптимальные значения целевых функций прямой и двойственной задачи совпадают.
Решение задач нелинейной оптимизации и организации снабжения и управления трудовими ресурсами с применением пакета MS Excel.
Рассмотрим две модели, широко использующиеся в деловой практике: транспортная задача и задача о назначениях. Обе они реализуются в виде ЗЛП, но имеют весьма характерные особенности, которые можно эффективно учитывать при решении таких задач средствами MS Excel.
Дата добавления: 2016-07-18; просмотров: 3812;