НАСОСНАЯ ЭКСПЛУАТАЦИЯ
Эксплуатация нефтяных скважин штанговыми насосами — один из основных видов механизированной добычи нефти в России. Штанговый насос представляет собой плунжерный насос специальной конструкции, привод которого осуществляется с поверхности через собранную колонну штанг.
Рис. 3.7. Штанговая насосная установка |
Насосная установка (рис. 3.7) состоит из насоса 1, находящегося в скважине, и станка-качалки 6, установленного на поверхности у устья. Цилиндр 12 насоса укреплен на конце спущенных в скважину насосно-компрессорных (подъемных) труб 9, а плунжер 11 подвешен на колонне штанг 2. Верхняя штанга (сальниковый шток) соединена с головкой 4 балансира 5 станка-качалки б канатной или цепной подвеской. В верхней части цилиндра установлен нагнетательный клапан 10, а в нижней — всасывающий клапан 13. Колонна насосно-компрессорных труб, по которым жидкость от насоса поднимается на поверхность, заканчивается на поверхности тройником 3. Сальниковое устройство в верхней части тройника предназначено для предотвращения утечек жидкости вдоль движущегося сальникового штока (т. е. верхней насосной штанги). По боковому отводу в средней части тройника жидкость из скважины направляется в выкидную линию. Возвратно-поступательное движение колонне насосных штанг передается от электродвигателя 8 через редуктор 7 и кривошипно-шатунный механизм станка-качалки.
Принцип действия насоса следующий. При движении плунжера вверх всасывающий клапан 13 под давлением жидкости открывается, в результате чего жидкость поступает в цилиндр насоса. Нагнетательный клапан 10 в это время закрыт, так как на него действует давление столба жидкости, заполнившей насосные трубы. При движении плунжера 11 вниз всасывающий клапан 13 под давлением жидкости, находящейся под плунжером, закрывается, а нагнетательный клапан 10 открывается, и жидкость из цилиндра переходит в пространство над плунжером.
Станок-качалка (рис. 3.8) состоит из следующих основных узлов: рамы 13 со стойкой 14, балансира с головкой 1 в некоторых станках с противовесами 5, редуктора 10 с кривошипами 9, на которых закрепляются противовесы и траверсы с двумя шатунами.
Приводом станка-качалки является электродвигатель. Вращение вала электродвигателя при помощи клиноременной передачи передается ведущему валу редуктора.
Сменные шкивы электродвигателя в зависимости от его мощности имеют диаметры от 63 до 450 мм. Диаметры шкивов на ведущем валу редуктора постоянны для каждого типа станка-качалки, но в зависимости от его грузоподъемности и крутящего момента редуктора изменяются от 315 мм у станка-качалки с наименьшей грузоподъемностью и до 1250 мм у самых тяжелых станков-качалок. Изменение передаточного числа клиноременной передачи станков-качалок от 2,5 до 5,0 достигается сменой шкивов на валу электродвигателя [9]. Передаточное число двухступенчатого редуктора для всех типов одинаково и равно 38, несмотря на то что габариты и масса редукторов в зависимости от типа станка изменяются в больших пределах. Так, масса редуктора самого легкого станка-качалки грузоподъемностью 1,5 т составляет 82 кг, а редуктора станка-качалки грузоподъемностью 8 т равна 3960 кг.
Рис. 3.8. Станок-качалка: 1 — головка балансира; 2 — стопорное устройство головки; 3 — опорный подшипник балансира; 4 — балансир; 5 — противовесы; 6 — сферический подшипник подвески траверсы; 7 — шатун; 8 — противовес кривошипа; 9 — кривошип; 10 — редуктор; 11— электродвигатель; 12 — ручка тормоза; 13 — рама; 14 — стойка |
Длительность и безаварийность работы станка-качалки зависят от степени его уравновешенности. Во время работы неуравновешенного станка-качалки в течение каждого двойного хода насоса двигатель нагружается неравномерно. При ходе плунжера вниз двигатель разгружается и не производит работы, так как плунжер перемещается вниз под действием собственного веса штанг. При ходе плунжера вверх на установку действует вес столба жидкости в трубах и вес штанг.
Такие колебания нагрузки отрицательно влияют на прочность всей установки и особенно на работу двигателя. Чтобы предотвратить преждевременный износ двигателя, необходимо выравнивать нагрузку на него в период каждого двойного хода плунжера. Это достигается уравновешиванием станка-качалки при помощи противовесов. Контргруз рассчитывают таким образом, чтобы он уравновесил вес столба жидкости и штанг, на преодоление которого и тратится энергия электродвигателя при движении плунжера вверх.
Штанговые скважинные насосы по конструкции и способу установки разделяются на две основные группы: невставные (трубные) и вставные.
Невставные насосы характерны тем, что их основные узлы спускаются в скважину раздельно: цилиндр — на насосно-компрессорных трубах, а плунжер в сборе с всасывающими клапанами — на штангах. Подъем невставного насоса из скважины также осуществляется в два приема: сначала извлекают штанги с плунжером и клапанами, а затем — трубы с цилиндром.
Вставные насосы спускают в скважину в собранном виде (цилиндр вместе с плунжером) на насосных штангах и извлекают на поверхность также в собранном виде путем подъема этих штанг. Насос устанавливают и закрепляют при помощи специального замкового приспособления, заранее спускаемого в скважину на трубах. В результате этого для смены вставного насоса (при необходимости замены отдельных узлов или насоса в целом) достаточно поднять на поверхность только насосные штанги, а насосные трубы остаются постоянно в скважине; их извлекают при необходимости исправления замкового приспособления, что на практике встречается редко. Таким образом, смена вставного насоса требует значительно меньше времени, чем невставного. Кроме того, при использовании такого насоса меньше изнашиваются насосные трубы, так как нет необходимости их спускать и поднимать, а также отвинчивать и завинчивать при каждой смене насоса. Эти преимущества вставного насоса имеют особое значение при эксплуатации глубоких скважин, в которых на спускоподъемные операции при подземном ремонте затрачивается много времени.
Учитывая, что F = πD2/4, где D — диаметр плунжера, а число минут в сутках 1440, то формулу (3.1) для определения подачи насосной установки можно записать в виде
(3.3)
В приведенной формуле переменные величины: диаметр плунжера D, длина хода s и число качаний. Подачу глубиннонасосной установки регулируют путем изменения этих величин.
При эксплуатации скважин применяют насосы следующих типоразмеров (по размеру плунжера): 28, 32, 38, 43, 56, 68, 82 и 93 мм. Площадь поперечного сечения плунжера у насоса наибольшего диаметра в 11 раз больше площади поперечного сечения насоса наименьшего диаметра.
Имея восемь стандартных размеров насоса, подачу установки можно регулировать путем замены насосов. Изменение подачи установки без извлечения насоса на поверхность достигается изменением длины хода или числа качаний.
Подача насоса, рассчитанная по приведенным выше формулам, называется теоретической. Она показывает, какое количество жидкости может подавать насос при условии полного заполнения пространства цилиндра под плунжером и при отсутствии утечек жидкости в насосе и подъемных трубах.
Фактическая подача насоса почти всегда меньше теоретической, и лишь в тех случаях, когда скважина фонтанирует через насос, его подача может оказаться равной или большей, чем теоретическая. Отношение фактической подачи насоса к теоретической называется коэффициентом подачи насоса. Эта величина характеризует работу насоса и учитывает все факторы, снижающие его подачу. Работа штанговой установки считается удовлетворительной, если коэффициент подачи ее не меньше 0,5 — 0,06:
Эксплуатация скважин в осложненных условиях.Многие скважины эксплуатируются в осложненных условиях, например: из пласта в скважину вместе с нефтью поступает большое количество свободного газа; из пласта выносится песок; в насосе и трубах откладывается парафин. Наибольшее число осложнений и неполадок возникает при эксплуатации скважин, в продукции которых содержится газ или песок.
В результате многолетних исследований разработаны различные технологические приемы предотвращения вредного влияния газа на работу насосной установки, которые включают:
1) использование насосов с уменьшенным вредным пространством;
2) увеличение длины хода плунжера;
3) увеличение глубины погружения насосов под уровень жидкости в скважине;
4) отсасывание газа из затрубного пространства.
Песок, поступающий из пласта вместе с нефтью, может образовать на забое песчаную пробку, в результате чего уменьшается или полностью прекращается приток нефти в скважину. При работе насоса песок, попадая вместе в насос, преждевременно истирает его детали, часто заклинивает плунжер в цилиндре.
Основные мероприятия по предохранению насоса от вредного влияния песка следующие:
1) регулирование отбора жидкости на скважины в основном в сторону его ограничения;
2) применение насосов с плунжерами специальных типов с канавками, типа «пескобрей»;
3) подлив нефти в затрубное пространство скважин с целью уменьшения концентрации песка в струе жидкости, проходящей через насос, и увеличение скорости движения этой струи;
| |||
Рис. 3.9. Газопесочный якорь |
4) применение трубчатых штанг.
Защитные приспособления на приеме насоса.Все мероприятия режимного и технологического характера по снижению вредного влияния газа и песка на работу штангового насоса обычно дополняются применением защитных приспособлений у приема насоса — газовых, песочных якорей или комбинированных газопесочных якорей.
Одна из конструкций газопесочного якоря показана на рис. 3.9. Этот якорь состоит из двух камер — газовой (верхней) 4 и песочной (нижней) 7, соединенных с помощью специальной муфты 6, в которой просверлены отверстия Б. В верхней камере якоря укреплена всасывающая трубка 3, а в нижней — рабочая труба 5, снабженная конической насадкой 8. Якорь присоединяется к приему насоса 1 через переводник 2, одновременно связывающий корпус якоря со всасывающей трубкой. На нижнем конце песочной камеры навинчена глухая муфта 9.
При работе насоса жидкость из скважины поступает через отверстия А в газовую камеру, где газ отделяется от нефти. Затем отсепарированная нефть через отверстия Б и рабочую трубу направляется в песочную камеру; отделившаяся от песка жидкость поднимается по кольцевому пространству в песочной камере и поступает через отверстия в специальной муфте во всасывающую трубу 3 на прием насоса.
В зависимости от количества песка, выделяемого из жидкости, корпус песочной камеры может быть удлинен наращиванием труб. Для лучшего выноса песка иногда успешно применяют насосные установки с полыми (трубчатыми) штангами. В качестве таких штанг используют насосно-компрессорные трубы диаметрами 33, 42 и 48 мм. Трубчатые штанги являются одновременно и звеном, передающим плунжеру насоса движение от станка-качалки, и трубопроводом для откачиваемой из скважины жидкости. Эти штанги присоединяют к плунжеру с помощью специальных переводников.
Предотвращение отложений парафина.При добыче парафинистой нефти в скважинах возникают осложнения, связанные с выпадением парафина на стенках подъемных труб и в узлах насоса.
Отложения парафина на стенках подъемных труб уменьшают площадь их поперечного сечения, в результате чего возрастает
сопротивление перемещению колонны штанг и движению жидкости. По мере роста парафиновых отложений увеличивается нагрузка на головку балансира станка-качалки и нарушается его уравновешенность, а в случае сильного запарафинивания труб снижается коэффициент подачи насоса. Отдельные комки парафина, попадая под клапаны, могут нарушить их герметичность.
При добыче нефти с большим содержанием парафина применяют такие методы устранения парафина, при которых не требуется остановка скважины и подъем труб на поверхность:
1) очистка труб механическими скребками различной конструкции, установленными на колонне штанг;
2) нагрев подъемных труб паром или горячей нефтью, закачиваемой в затрубное пространство;
3) нагрев подъемных труб электрическим током — электродепарафинизация.
В последние годы при насосной эксплуатации широко применяют насосно-компрессорные трубы, футерованные стеклом или лаками. В таких трубах парафин не откладывается, и эксплуатация скважин происходит в нормальных условиях.
Дата добавления: 2020-07-18; просмотров: 505;