Метод вытягивания монокристалла (Метод Чохральского)
Рис. 4.12. Установка для выращивания монокристаллов полупроводников из расплава
(1 – затравка, 2 – монокристалл, 3 – высокочастотный редуктор, 4 – расплав, 5 – тигель, 6 – графитовая оболочка)
При постепенном опускании штока в расплав медленно вводится монокристаллическая затравка, которая может быть ориентирована в определенном кристаллографическом направлении. Затравка выдерживается в расплаве, пока не оплавится с поверхности. Когда это достигнуто, затравку, вращая, начинают медленно поднимать. За затравкой тянется жидкий столбик расплава, удерживаемый поверхностным натяжением. Попадая в область низких температур над поверхностью тигля, расплав затвердевает, образуя одно целое с затравкой.
Чтобы получить монокристаллы строго постоянного диаметра по всей длине, необходимо температуру расплава поддерживать постоянной с точностью до десятых долей градуса. Этим способом получают монокристаллы германия диаметром в десятки миллиметров. Слитки имеют неодинаковое сопротивление по длине (рис. 4.14), так как верхняя часть слитка содержит меньшее число примесей, чем нижняя, вытягиваемая из остатков расплавленного германия с повышенной концентрацией примесей. При вытягивании монокристалла в него вводят в строго контролируемом количестве примеси для получения германия с определенной величиной и типом.
Рис. 4.13. Изменение удельного сопротивления по длине монокристалла германия
Свойства германия
Кристаллический германий – твердый, хрупкий материал с характерным металлическим блеском. Кристаллизуется в виде кубической решетки типа алмаза. Ширина запретной зоны при комнатной температуре =0.75 эВ, при температуре 300 К =0.67 эВ. Рабочая температура полупроводниковых приборов на основе германия не превышает 80°С. Концентрация собственных носителей заряда ni=2.5×1019 м-3. Собственное удельное электрическое сопротивление =0.68 Ом×м. Электропроводимость германия зависит от температуры. При низких температурах (Т<5.4 К) и высоких давлениях (Р>11 ГПа) германий переходит в сверхпроводящее состояние.
При плавлении удельная проводимость германия возрастает скачком примерно в 13 раз. При дальнейшем нагреве удельная проводимость сначала почти не изменяется, а начиная с температуры 1100° С — падает. В момент плавления германия происходит увеличение его плотности на 5—6%.
Для производства полупроводниковых приборов используют германий электронного и дырочного типов с определенным удельным электрическим сопротивлением . Тип проводимости и удельное электрическое сопротивление германия определяется количеством введенных в исходный материал примесей. Монокристаллический германий различных марок, легированный сурьмой, мышьяком, галлием и золотом, обладает удельным электрическим сопротивлением от 0,0004 до 45 Ом×м. Легирующие примеси вводят в определенных количествах в рабочий объем расплавленного поликристаллического германия перед выращиванием монокристаллов.
Германий легируют нейтральными, донорными, акцепторными и создающими глубокие энергетические уровни примесями.
Нейтральные примеси не меняют тип электропроводности полупроводникового материала и количество носителей заряда в нем. К нейтральным примесям германия относят инертные газы, азот и аргон и элементы IV группы Периодической системы химических элементов Д. И. Менделеева: кремний, свинец, олово.
Основными акцепторными примесями в германии являются элементы III группы Периодической системы химических элементов Д. И. Менделеева: галлий, индий, алюминий.
Донорные уровни в германии создают элементы V группы Периодической системы химических элементов Д.И.Менделеева: мышьяк, сурьма, висмут, фосфор, а также элемент I группы - литий.
Глубокие энергетические уровни в запретной зоне германия образуют многие элементы I, II, VI, VII и VIII групп Периодической системы химических элементов Д.И. Менделеева. Однако растворимость этих элементов, как правило, значительно меньше растворимости акцепторов и доноров.
Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощности, умножения двух величин в приборах вычислительной техники и т. д.. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз с большой светосилой (для инфракрасных лучей), оптических фильтров.
Рабочий диапазон температур германиевых приборов —. от —60 до +70° С, при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный — в три раза. При охлаждении до —(50—60)° С прямой ток падает на 70—75%. Германиевые приборы должны быть защищены от действия влажности воздуха.
Использование монокристаллических слитков германия в технологии изготовления полупроводниковых приборов и интегральных микросхем связано с большими потерями материала при механической обработке (резке слитков на пластины, шлифовке и полировке пластин). Поэтому широко применяют эпитаксиальные пленки германия, которые получают осаждением монокристалического германия в виде монокристаллических пленок на подложки из различных материалов (германий, кремний, кварц, сапфир).
Кремний (Si)
Кремний является элементом IV группы Периодической системы химических элементов Д.И.Менделеева. После кислорода это самый распространенный элемент в земной коре. Он составляет примерно 1/4 массы земной коры. Однако в свободном состоянии в природе он не встречается. Его соединениями являются такие распространенные природные материалы, как кремнезем и силикаты. Песок и глина, образующие минеральную часть почвы, также представляют собой соединения кремния.
Из соединении кремний получают несколькими способами. Чаще всего используют метод восстановления четыреххлористого кремния SiCl4 парами цинка или водорода:
SiCl4+2Zn -> Si+2ZnClr
Реакция проводится при температуре 950 °С.
Слитки в виде стержней большого диаметра (до d - 100 мм) используют для мерных загрузок в тигли при выращивании монокристаллического кремния по методу Чохральского. Слитки диаметром до d — 40 мм используют в качестве заготовок для бестигельной зонной плавки.
Полученный поликристаллический кремний содержит 1...5% примесей. Такой кремний не пригоден для использования в полупроводниковом производстве, поэтому он подвергается дополнительной очистке.
В технологическом отношении кремний более сложный материал, чем германий, так как он имеет высокую температуру плавления 1414°С и в расплавленном состоянии химически активен (вступает в реакцию со всеми материалами, из которых изготавливают тигли). В связи с этим очистку кремния ведут зонной плавкой в вакууме без применения тиглей.
Дата добавления: 2020-07-18; просмотров: 383;