ОЧЕНЬ СВОБОДНАЯ КОЖА


Все собаки должны иметь здоровую кожу без признаков, вызывающих дискомфорт.

Особое внимание следует уделять таким отклонениям от нормы, которые могут вызвать раздражение кожи, а именно на:

избыток складок на коже, приводящие к закрытию носа и /или глаз собаки;

избыток свободной кожи на корпусе, конечностях и голове.

 

ТУЧНОСТЬ \ ИЗБЫТОЧНЫЙ ВЕС

В последнее время возросло количество собак с избыточным весом. В выставочных рингах некоторые собаки не могут двигаться и правильно дышать из-за проблем, связанных с излишком веса.

Частыми проблемами являются неправильное питание, а также недостаток физической активности или проблемы со здоровьем. Когда судья не способен прощупать ребра, когда поясница не выражена из-за покрывающего ее слоя жировых отложений, когда собака не способна правильно двигаться или дышать – собакам с такими проблемами никогда не должна быть присуждена оценка «отлично».

 

ТЕМПЕРАМЕНТ И ПОВЕДЕНИЕ

Все собаки должны демонстрировать хороший темперамент, как в ринге, так и в повседневной жизни. Допускается поведение, присущее конкретной породе, однако, нежелательны избыточная робость, нежелание общаться с человеком, тяжелый характер.

Агрессивное поведение или излишняя робость, демонстрируемые собаками во время судейства, недопустимы и должны наказываться дисквалификацией.

 

ИЗБЫТОЧНАЯ ШЕРСТЬ И ГРУМИНГ

Шерсть не должна быть избыточной настолько, чтобы препятствовать движениям собаки или ее способности видеть.

 

ПОКАЗ СОБАКИ

Все чаще и чаще собаки, как в стойке, так и в движении демонстрируются на выставке в ринговке, плотно охватывающей область горла, или натянутом поводке. Это не способствует благополучному состоянию собаки, более того, негативно сказывается на правильных движениях собаки и приводит к тому, что собака не может демонстрировать естественные движения, свойственные породе.

Собака должна демонстрироваться на свободном поводке в естественной стойке, показывая правильные, типичные для данной породы движения. Поднимать собаку вверх за шею и /или за хвост запрещено.

При подготовке собаки к выставке запрещено пользоваться любыми веществами, которые изменяют структуру, форму или цвет шерсти, кожного покрова и мочки носа. Разрешается только тримминг, стрижка и расчесывание шерсти щеткой или расческой.

Участник выставки, который отказывается следовать общепринятым правилам показа собак, должен покинуть ринг. Хотя это не влияет напрямую на здоровье или поведение собаки, судья имеет право не проводить экспертизу данной собаки или дать заведомо более низкую оценку.

 

РЕЗЮМИРОВАНИЕ

Крайне важно, чтобы каждый судья осознавал, что своими действиями он оказывают влияние на развитие породы в целом и здоровье каждой собаки по отдельности. Судьи часто формируют основы развития (как позитивные, так и негативные) внутри породы.

По этой причине мы просим судей после проведения экспертизы в породе, где были замечены проблемы, связанные со здоровьем и/или поведением, заполнить унифицированный документ. Результаты экспертизы, отраженные в данном документе, могут быть переданы в породные клубы, чтобы они имели возможность проследить дальнейшее развитие породы.

Данное Положение может использоваться на национальных и международных выставках. Также мы обращаемся к породным клубам с просьбой использовать документ такого рода, поскольку, как правило, большинство собак данной породы выставляются на монопородных выставках, организуемых национальными клубами.

 

Английская версия является аутентичной.

Данное Положение было одобрено Генеральным комитетом FCI на встрече в Хельсинки в октябре 2013 года.

 

Перевод выполнила Самсонова Анна, 17 апреля 2014

4.1 ОСНОВЫ ГЕНЕТИКИ

4.1.1 Цитология

Для того, чтобы понять устройство многоклеточного организма, для начала нужно изучить устройство его структурной единицы. Без этого не стоит даже примеряться к генетике.

Итак, клетка –основа основ, строительный кирпичик для многоклеточных, но и сама по себе может быть самостоятельным отдельным организмом. Ничего живого меньше и проще одноклеточных в природе не существует, поэтому мы с полным правом можем называть клетку единицей жизни. И хотя клетки разных биологических видов отличаются и внешним видом и внутренним содержанием, но соблюден некий общий принцип в их устройстве, который позволяет понять, что перед нами именно клетка.

Рисунок 1. Строение клетки.

У всякой клетки (рис. 1.) есть оболочка –мембрана, тонкая пленка, ограничивающая тело клетки в пространстве. Внутри клетка заполнена жидкостью – цитоплазмой. Это самая обычная вода, в которой растворены неорганические и органические вещества. Концентрация этих веществ настолько велика, что вода густеет, превращаясь в плазму, отсюда и название –цито-плазма (по латыни клетка называется cytos). Еще в клетке расположены различные твердые включения, так называемые органоиды или органеллы. Это отдельные крупные молекулы белков и сложные их соединения, молекулярные комплексы.

И хотя загадок в устройстве клетки остается еще много, но также многое уже известно. Далее мы рассмотрим строение клетки, но это будет не какое-то абстрактное одноклеточное, а животная клетка многоклеточного организма, из которых и «построены» собаки.

Митохондрии -это наши хорошие знакомые, примитивные бактерии прокариоты. Митохондрии стали энергетическими станциями клеток, так как их основная функция - синтез аденозинтрифосфорной кислоты (АТФ) - универсального источника энергии, супертоплива, необходимого для осуществления процессов жизнедеятельности в клетке и во всем организме. АТФ образуется при «сжигании» глюкозы в присутствии кислорода. Поэтому низкий уровень глюкозы в крови (гипогликемия) приводит к недостаточному производству АТФ. Легкая степень гипогликемии, когда происходит незначительное снижение уровня глюкозы, отмечается слабостью, головокружением, учащенным сердцебиением, неустойчивым настроением и чувством «волчьего» голода. Все поклонники жестких диет, особенно безуглеводных, знакомы с этим состоянием.

Стоит также упомянуть и о ДНК митохондрий. Это небольшое кольцо, содержащее лишь несколько десятков генов, оказалось хранилищем поистине бесценной информации. Сравнивая мДНК разных видов можно проследить путь эволюции за все миллиарды лет существования жизни на нашей планете –кто, когда и от кого произошел (хромосомные гены из-за постоянных рекомбинаций подобной информации не содержат). Исследования митохондриальной ДНК проводятся и у собак, что позволило подтвердить происхождение собак от диких волков. И даже определить время и географическое место появления первой собаки –район реки Янцзы около 16тыс. лет назад. Более подробные исследования позволят определить точную историю возникновения и развития каждой из пород.

Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Известны два ее типа -гранулярная и гладкая. Это своего рода мастерские, в которых осуществляется синтезе белков, жиров и углеводов.

Рибосомы -микроскопические тельца округлой формы диаметром 15-20 нм. В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. Рибос омы как раз и осуществляют синтез белков.

Аппарат Гольджи представляет собой стопку мембранных мешочков и цистерн и связанную с ними систему пузырьков. Основной функцией аппарата Гольджи является транспорт веществ в цитоплазму и внеклеточную среду, а также синтез жиров и углеводов и формирование лизосом. Аппарат Гольджи можно сравнить с транспортно-распределительным узлом. Все произведенные в клетке и поступившие извне вещества поступают в аппарат Гольджи, где получают специальные метки (что-то вроде путевого листа) по которым «груз» будет опознан и доставлен с помощью внутриклеточного транспорта точно по адресу в нужную область клетки. А вот кто и как там в этом аппарате принимает решение, откуда знают -кого куда направить, увы, неизвестно.

Лизосомы представляют собой мембранные мешочки, наполненные пищеварительными ферментами. Эдакие ходячие желудки клетки. Лизосомы расщепляют питательные вещества, переваривают попавшие в клетку бактерии, выделяют ферменты, удаляют путём переваривания ненужные части клеток. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Цитоскелет —клеточный каркас или скелет, находящийся в цитоплазме, в функции которого входит поддержание формы клетки, обеспечение движения клетки, внутриклеточный транспорт и клеточное деление. Микрофиламенты представляют собой две цепочки, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, создавая дополнительную жесткость оболочки и помогая поддерживать форму клетки. В клетках мышц микрофиламенты вместе со специальным белком миозином участвуют в мышечном сокращении. Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки, митохондрии и специальные транспортные белки, называемые моторными. Моторные белки даже внешне слегка напоминают лошадку, они состоят из нескольких лёгких цепей и двух тяжёлых, в которых выделяют головной и хвостовой домены. Головные домены связываются с микротрубочками и являются собственно двигателями, а хвостовые — связываются с органеллами или белками, подлежащими транспортировке. Затем «лошадка» заправляется молекулой АТФ и мгновенно доставляет груз к месту назначения. Выделяют два вида моторных белков: динеины и кинезины. Динеины перемещают груз только из периферийных областей клетки к центру. Кинезины, напротив, перемещаются из центра к клеточной периферии.

Центриоли - разновидность микротрубочек, сложены из белка тубулина. Во время деления клетки они образуют веретено, вдоль которого выстраиваются хромосомы.

Хромосомы - самовоспроизводящиеся структуры клеточного ядра. Как у прокариотических, так и у эукариотических организмов гены располагаются группами на отдельных молекулах ДНК, которые при участии белков и других макромолекул клеток организуются в хромосомы. Зрелые клетки зародышевой линии (гаметы - яйцеклетки, спермии) многоклеточных организмов содержат по одному (гаплоидному) набору хромосом организма.

Каждая молекула ДНК упакована в отдельную хромосому, а вся генетическая информация, хранящаяся в хромосомах одного организма, составляет его геном. Следует отметить, что хромосомы в клетке меняют свою структуру и активность в соответствии со стадией клеточного цикла: в митозе они более конденсированы и транскрипционно инактивированы; в интерфазе , наоборот, они активны в отношении синтеза РНК и менее конденсированы.

Ядро. Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро, где располагаются хромосомы. Форма и размеры ядра зависят от формы иразмера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это -многоядерные клетки, есть такие и в организме собаки –волокна поперечно-полосатой мускулатуры и клетки костной ткани -остеокласты. В многоклеточном организме есть и безъядерные клетки, например, эритроциты. Но главное в ядре не размеры и не количество, а внутреннее содержание. Именно в ядре расположены те самые хромосомные ДНК, которые и являются главным предметом нашего интереса.

В ядре клетки также расположено ядрышко, в котором происходит синтез рибосом.

Рисунок 2

Плазматическая мембрана. В состав плазматической мембраны (рис. 2.) входят белки и липиды (жиры). Молекулы липидов (1) похожи на толстенькие сосисочки и их плотное соединение образует сплошной двойной слой, который собственно и является оболочкой клетки. Гидрофобной головкой липиды обращены внутрь клетки. Гидро – вода, фобия – и есть фобия, то есть водонепроницаемый, водоотталкивающий слой образуется на внутренней поверхности мембраны, благодаря чему жидкая цитоплазма не вытекает наружу. Гидрофильные (любящие воду) концы липидов обращены наружу и это правильное решение, ведь клетка не может существовать без воды.

В этом сплошном слое липидов, утопая на разную глубину, расположились разнообразнейшие белки. Одна из главных функций мембранных белков -транспорт веществ через мембрану (2). Из внешней среды в клетку поступает вода, кислород, различные неорганические и органические молекулы, из клетки во внешнюю среду выделяются продукты жизнедеятельности. Для микромолекул белки создают тонкие каналы, такие своеобразные норы, проницаемые только для определённых веществ. Крупные макромолекулы обволакиваются, можно даже сказать –проглатываются, пластичными подвижными белками и таким образом переносят через мембрану.

Следующая функция: на мембране существуют специальные белки-насосы (3), которые вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+), благодаря чему на внешней стороне мембраны создается положительный электрический заряд, а на внутренней —отрицательный. Электрический потенциал на мембране нужен для «общения» клетки с нейронами, потому как нервная система организма работает на самом обычном электричестве.

Некоторые белки, находящиеся в мембране, являются рецепторами (4) - молекулами, при помощи которых клетка воспринимает те или иные сигналы. Ведь клетка многоклеточного организма это не какая-то чужеродная бактерия, которая внедрилась в организм и может там вытворять все, что ей вздумается, она часть единого сообщества и потому находится под полным контролем и управлением организма. Воздействуя на рецепторы, организм заставляет клетку выполнять те или иные функции. Так что рецепторы с полным правом можно назвать клавишами управления клеткой.

Мембранные белки нередко являются ферментами (5). Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

На мембране есть антигены (6) -своеобразные ярлычки, для маркировки клеток. Каждый тип клеток имеет свой оригинальный маркер, по которому клетку опознают все заинтересованные службы организма. В первую очередь - иммунные белки, которые внимательно следят за тем, чтобы в организм не проник опасный чужак. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей.

Вот, собственно, и все в общих чертах и упрощенном виде. И хотя не удалось пока разобраться со многими процессами, происходящими внутри клетки, зато «внешнеэкономическая клеточная деятельность» ясна и понятна. Клетка ест, пьет, дышит и выделяет продукты жизнедеятельности. Одноклеточное потребляет/выделяет прямо из/в окружающую среду. Клетка многоклеточного организма питательные вещества получает преимущественно от организма, но взамен она обязана что-то произвести или выполнить какую-то работу на благо всего организма, что вполне равноценная плата за дармовой корм и защиту. Только серьезные внутренние проблемы или повреждения клетки дают ей право умереть не поделившись. Следует отметить, что данная программа, как и все остальные программы, изначально вложенные в живую материю, эволюционируют вместе с живыми организмами. Для сложных многоклеточных организмов эта программа развилась в инстинкт размножения, который требует от животного создать дочерний организм. При этом деление отдельных клеток многоклеточного организма не отменяется, но теперь это лишь вспомогательная программа, которая дает возможность осуществления главной задачи – рождение нового многоклеточного организма. Поэтому некоторым клеткам многоклеточного организма, например, нейронам и клеткам мышц, разрешено не делиться. На разумной стадии жизни инстинкт размножения развивается в осознанное желание материнства и отцовства, но при этом новая эволюционная программа лишь присоединяется к двум предыдущим, не отменяя ни деления отдельных клеток организма, ни наличие инстинкта.

Относиться к этой программе следует с должным уважением и пониманием того, что такая программа не может быть отменена или испорчена без уважительной причины. Если у животного полностью отсутствует материнский инстинкт, то это сигнал того, что данное животное не должно оставить после себя потомство. Так что если щенная сука не желает ухаживать за своими щенками, и никакие ваши ухищрения не заставляют ее изменить свое отношение к новорожденному потомству, то такую собаку не следует далее использовать в разведении, даже если в питомнике есть другие суки, готовые выкормить чужих щенков.

Но вернемся к клетке и ее программе деления, и пойдем от простого к сложному –вначале рассмотрим деление одноклеточного организма. Итак, всякая клетка буквально с первых мгновений жизни уже нацелена на создание дочерней клетки. А как ее создавать? Клетка должна создать клеточную мембрану, скопировав все липиды и белки, из которых та состоит; создать точную копию каждого органоида; отлить часть цитоплазмы. Но чтобы все это сотворить нужно, во-первых, иметь стройматериалы. Потому клетка питается не только для личных нужд, но и начинает создавать запасы, так сказать жирок нагуливает. Когда накопления становятся уже приличные, кто-то там из кладовщиков-учетчиков, отвечающих за пересчет нажитого непосильным трудом, дает сигнал, что можно начинать. Высококвалифицированные мастера-рибосомы уже на изготовке, они могут собрать все что угодно, вот только проблема с тем, что они должны знать -кого и из чего следует создавать. Представьте себе, что человеческому мастеру показали некое неизвестное устройство, которое что-то умеет делать, и потребовали собрать точно такое же, до последнего винтика и детальки. Мастер ответит, что не может по одному лишь внешнему виду, без чертежей и схем, понять, как это устроено, и сделать точно такое же. Это же вам скажут и внутриклеточные строители -рибосомы, если вы попросите их построить какой-то белок или органоид. Без информации о его строении это сделать невозможно. И вот теперь-то мы, наконец, добрались до той самой функции живой ткани, которой и интересуется наука генетика, а именно –хранение и передача информации в живой клетке. [3]


4.2 ЭМБРИОГЕНЕЗ

 

Изначально все собаки, даже крупные, красивые и умные, были самыми настоящими «примитивными» одноклеточными, и получилось это одноклеточное в результате слияния яйцеклетки и сперматозоида. Затем эта клетка (зигота) делилась множество раз и всего лишь через два месяца мы получили на выходе очень даже многоклеточного щенка. Вот только есть одна странность: на входе у нас была одна клетка, определенного типа и вида, а когда мы станем рассматривать щенка, то окажется, что он состоит из разнообразных групп совершенно не схожих клеток. Тут и минерализированные клетки костной ткани остеоциты, и клетки мышечной ткани - миоциты , клетки сердечной мышцы –кардиоциты, гепатоциты печени, нейроны, эритроциты, лимфоциты и т.д. и т.п. Эти клетки не только отличаются внешне, они выполняют совершенно разные функции, в них синтезируются разные белки. Но если мы посмотрим в ядро каждой из этих клеток, то окажется, что в них абсолютно одинаковые наборы ДНК. Как же это вообще возможно такое, что клетки с одинаковым геномом так несхожи?

Мы с вами бросили оплодотворенную яйцеклетку на произвол судьбы и заинтересовались уже готовым щенком, пропустив один из удивительнейших процессов в природе – формирование

плода. Потому, возвращаемся на 2 месяца назад и наблюдаем, как яйцеклетка начинает дробиться, а число клеток эмбриона при этом растет в геометрической прогрессии: 2, 4, 8, 16, 32...

Ранние стадии эмбриогенеза животных не случайно называют «дроблением»: зигота именно дробится, клетки эмбриона после каждого деления становятся всё мельче, поскольку между клеточными делениями отсутствует стадия роста клеток. Здесь наблюдается некоторое отличие от деления одноклеточных, у которых, как мы помним, клетка перед делением должна увеличиться вдвое. Яйцеклетка же заранее запаслась всеми необходимыми «стройматериалами», и не на одно, а на множество делений вперед, потому она такого гигантского размера, во много раз больше обычных клеток. Да и неоткуда зиготе взять питательные вещества, ведь оплодотворение яйцеклетки происходит в фаллопиевых трубах и от момента оплодотворения до прикрепленияплодного яйца к стенке матки проходит несколько дней, в течение которых клетка вынуждена использовать только внутренние ресурсы. Только когда яйцеклетка сможет получать от материнского организма необходимые питательные вещества, тогда и начинается настоящее деление, с предварительным увеличением размера исходных клеток, и эмбрион начнет расти не по дням, а по часам. Пока же при дроблении зиготы общее количество цитоплазмы не растет, увеличивается лишь количество клеточных ядер, а, следовательно, и ДНК. Но если каждый вновьсозданный комплектДНК является точной копией первичного оригинала, то цитоплазма делится между клетками неравномерно. Цитоплазма яйцеклетки специально имеет такой хитрый состав, чтобы было невозможно ее разделить честно и справедливо напополам, так что изначально при дроблении получаются клетки, имеющие одинаковое ядро, но разную цитоплазму.

На первых стадиях дробления геном пока что спит. С него, как с бесчувственного тела, снимают копии, но никакая информация с него не считывается и трансляция белков в клетке не производится. Но где-то на стадии 4-8 клеток геном начинает просыпаться. Вернее, просыпаются мРНК. Они устремляются к геному, и вот тут вспоминаем предыдущую лекцию, что работа мРНК целиком и полностью зависит от физико -химического состава цитоплазмы. А наши первые клетки как раз этим самым составом цитоплазмы и отличаются. Поэтому в одних клетках мРНК начнут считывать информацию с одних генов и далее рибосомы синтезируют соответствующие им белки, а в других клетках начнут совсем с других генов/белков. И вот эти самые первые белки имеют такое хитрое свойство –они заставляют клетки своей группы делиться в определенном направлении, что приводит к расслоению групп клеток. В процессе деления образуются два зародышевых листка: наружный –эктодерма и внутренний –энтодерма. Затем добавляется и средний слой -мезодерма. Следующий этап (нейруляция) -участок эктодермы отделяется от остальной части клеточного слоя, образуя нервную пластину. Боковые края нервной пластинки утолщаются, образуя нервные валики, которые постепенно сближаются, а в самой пластинке вдоль средней линии образуется желобок. Валики сходятся над ним и сливаются, в результате чего возникает полая нервная трубка, из которой в процессе дальнейшего развития возникнет головной и спинной мозг, а клетки краевых отделов нервного желобка образуют нервный гребень.

Из этих 4-х основных пулов: эктодермы, энтодермы, мезодермы и нервного гребня и будет формироваться организм. Это те самые стволовые клетки, о которых вы не могли не слышать. Стволовые клетки могут стать чем угодно, любым органом или тканью и они ими становятся, когда начинается самый удивительный и фантастический процесс -дифференцировка клеток или как мы называем по-простому –закладка органов.

От каждого массива отделяются группы клеток, образовавшиеся в процессе деления. Пока что эти клетки практически идентичны, но с каждой отдельной группой начинают происходить чудесные превращения. Специальные белки в них отключают «лишние» гены и оставляют только те, которые нужны клетке для ее специфической функции. Например, клетке мышечной ткани не нужны пищеварительные ферменты, характерные для клеток эпителия кишечника, но зато обязательны белки, способствующие выраженным сокращениям клетки, потому гены первых выключат, а гены вторых оставят и т.д.

Группы клеток передвигаются в нужном направлении и далее участвуют в создании органов и тканей:

Эктодерма дает начало наружным слоям кожи и ее производным -волосы, ногти, зубная эмаль, и частично слизистой ротовой полости и полостей носа.

Энтодерма формирует выстилку пищеварительного тракта, печень, поджелудочную железу, щитовидную железу, легкие, тимус, а также выстилку дыхательной системы, мочевого пузыря и уретры.

Мезодерма развивается в соединительную ткань, мышечную ткань, костную и хрящевую ткани, кровь и сосудистую систему, мочеполовую систему и дермальный слой кожи.

Нервный гребень: нервная система, пигментные клетки, хрящи лицевого черепа, часть мозговых оболочек, хромаффинные клетки надпочечников, одонтобласты, перегородка между аортой и легочным стволом, кишечник.

Совершенно удивительна степень согласованности процесса дифференцировки и миграции клеток, ведь из одного пула стволовых клеток формируются разные органы, а один орган может образоваться из клеток разных пулов. Каждый пул должен произвести и отмерить нужное количество клеток на тот или иной орган, как-то нужно подсказать этим клеткам в кого им следует превратиться, притом нужно соблюсти сроки –какие органы нужно создать в первую очередь, а с какими следует повременить, нужно объяснить клеткам в какую сторону они должны двигаться в организме. Представьте себе, что идет формирование кровеносных сосудов, уже заложены первые круги кровообращения, а сердце еще и не начинало формироваться. Сосуды без сердца, впрочем, как и сердце без сосудов –вещь бесполезная, они должны образовываться согласованно друг с другом, да еще в строго отведенный промежуток времени, чтобы в нужный час начала функционировать первичная система кровообращения, иначе эмбрион погибнет. Или возьмем формирование печени. Сама печень образуется из клеток энтодермы, кровеносные сосуды, питающие ее, получаются из мезодермы, а иннервацию обеспечивают производные нервного гребня – нейроны. Необходима синхронизация по времени между всеми тремя пулами, чтобы соответствующие группы клеток дифференцировались в нужное время и в нужном количестве, чтобы они оказались в нужном месте, опознали друг друга и соединились определенным образом.

Итак, процесс невероятно сложен. Настолько сложен, что было бы величайшим чудом, если бы он протекал совсем без ошибок. Наоборот, ошибки -это норма. Если раскурочить любой организм, то можно будет обнаружить там множество разнообразных мелких и крупных дефектов, и отнюдь не все они будут иметь генетические причины. Многие дефекты -следствие нарушений в процессе эмбриогенеза. Все женщины у кого есть дети, отлично знают, что самый ответственный период беременности с 3 по 12 неделю, когда происходит закладка органов. В это время крайне нежелательно подвергаться неблагоприятным воздействиям, как то: бесконтрольный прием лекарств, вирусные инфекции, стрессы, перегрев, переохлаждение и пр. То же самое можно сказать и о собаках. У собак беременность протекает всего лишь около 2 месяцев и дифференцировка органов проходит гораздо быстрее, где-то к месяцу щенок уже практически полностью сформировался. Заботливое отношение к щенной суке в первый месяц беременности просто необходимо для того, чтобы исключить любое неблагоприятное вмешательство в то священнодейство, что происходит в организме.

Но не только тератогенные факторы и мутации в генах могут привести к аномалиям развития плода, даже если поместить эмбрион в некие идеальные лабораторные условия, все равно не обойдется без сбоев. Происходит это из-за рассогласования в работе некоторых белков. Все белки в клетке и сами клетки с помощью тех же белков, постоянно обмениваются друг с другом химическими и физическими сигналамии меняют свое поведение в зависимости от того, какие сигналы они получили от соседей. Но в некоторых случаях конструкции белков делают невозможным или затруднительным их общение сотоварищи.

Возьмем для примера простой вариант: есть белок А –мембранный рецептор (мы помним из цитологии, что рецепторы принимают управляющие сигналы от организма к клетке) и есть белок В, который является непосредственным передатчиком сигнала рецептору (лиганд), путем присоединения к нему с помощью химических связей. В генах, кодирующих формулы этих белков, произошло по одной мутации, и теперь мы имеем по два типа каждого из белков: А и а, В и b. Так вот, может оказаться, что лиганд типа В прекрасно оккупирует оба рецептора, а вот белок b типа может соединиться только с а-рецептором, но никак не стыкуется с его доминантной формой - А. При генотипе ААbb целое семейство клеток может не получить важный управляющий сигнал от организма и формирование какого-либо органа окажется под угрозой. Если бы какой-то исследователь решил узнать причину этой аномалии и стал изучать ДНК собаки с целью обнаружения гена-вредителя, то его ожидало бы фиаско. Ведь для поиска генетических мутаций берутся для сравнения образцы тканей у здоровых и больных особей. Когда бы дошла очередь до гена А, то ученый отметил бы, что есть множество здоровых животных и с геном А, и с его мутантной формой – а. Точно так же обнаружилась бы масса здоровых собак с генами B и b. Спросите, отчего же этот исследователь такой не сообразительный и не заметил, что только лишь сочетания АВ, aB, ab дают здоровых животных, а при сочетании Ab обнаруживается порок. Так в том то и дело, что исследователь генома не знает на какое сочетание следует обратить внимание, ведь то, что белки тесно взаимодействуют друг с другом в организме, вовсе не значит, что их гены находятся рядом в ДНК. Они даже могут располагаться в разных хромосомах.

Возможно, вы возразите, что не совсем корректно называть подобные неувязки рассогласованием, ведь налицо есть мутация в гене В, которая и явилась причиной аномалии, и даже благополучное сотрудничество b с одной из форм рецептора не может служить для него оправданием. Взять, да и отсеять, подлеца, с помощью селекционных методов, чтобы не доставлял нам столько хлопот. Если речь идет о такой простенькой связи, то, конечно, постоянно исключая из разведения особей с генотипом Ab, мы постепенно уменьшим встречаемость аллеля b в поголовье. Но если вдруг окажется, что белок В взаимодействует не только с рецептором А, но еще и с рецептором С, который также существует в двух ипостасях и расположен на мембране клеток совсем иного типа и тут, наоборот, белок b активен с обоими рецепторами С и с, а белок Втормозит при встрече с одним из этой пары рецепторов. И кто теперь плох, а кто хорош? А еще может оказаться в организме белок D, одна из мутаций которого может взять на себя функции В-белка и также взаимодействовать с рецептором А. Если собаке с генотипом Ab повезет с попутчиком в виде d, то никакой аномалии развития не случится, так как d подменит нерасторопного b. Таких коварных многоступенчатых обратных связей среди десятков тысяч белков может быть несметное количество. Притом, все эти гены и белки не являются неблагополучными, неполноценными, по отдельности они замечательные ребята, но не всегда находят общий язык друг с другом. Иногда это может привести к возникновению не менее серьезных аномалий и пороков развития, чем при генетических мутациях.

Возьмем конкретный процесс –выход семенников в мошонку у кобелей. Это достаточно сложный церемониал, в который входит и правильное формирование и самих семенников, и семенного канатика, и пахового канала, и пахового кольца. Это еще и гормонально зависимый процесс, то есть, задействована вся эндокринная система организма. Тысячи и тысячи белков работают в поте лица, чтобы все прошло успешно. Нарушить этот процесс можно: а) вызвав вредную мутацию в одном из белков; б) дезинтегрировать работу этих белков или вызвать сдвиг во времени формообразовательных реакций; в) тератогенным воздействием. Как ни странно, но п.п. б) и в) встречаются гораздо чаще. Этими же тремя способами можно нарушить формирование прикуса, заполучить эпилепсию, дисплазию суставов, пороки строения внутренних органов, белые пятна на шерсти и пр. Иногда щенок имеет целый букет подобных аномалий. Многие заводчики сталкивались с тем, что у кобелей-крипторхов еще и прикус не в порядке и даже порок сердца имеется. Вероятность того, что эти пороки вызваны целой серией генетических мутаций, крайне мала. Причиной тому, скорее всего, та самая «транспортная пробка» в эмбриогенезе, когда сбой в одном месте тянет за собой задержку и несогласованность в работе сопредельных систем организма.

Тут природа поставила перед человечеством серьезную задачу, казалось бы, стоит определить дислокацию всех генов, внимательно изучить на предмет мутацийкаждый из них (а это не такая уж архисложная задача для всего лишь 20 тысяч генов) и причина любого наследственного заболевания, хоть у собаки, хоть у человека станет точно известна. Свершилось. Геном (по крайней мере, человека) расшифрован, энтузиазм у ученых бьет через край, и вовсе не безрезультатно -на сегодняшний день обнаружено более 4000 тысяч мутаций, ответственных за наследственные заболевания. Однако остался приличный перечень болезней, для которых так и не удалось найти соответствующие мутации, хотя нет сомнений в том, что в большинстве случаев эти заболевания обусловлены генетическими причинами, с семейным характером наследования. Либо генетическая мутация обнаружена лишь у части лиц, страдающих тем или иным наследственным заболеванием, в то время как у остальных больных данный ген в норме. Особенно интересны случаи, когда такое наследственное заболевание регистрируется только у одного из однояйцевых близнецов, имеющих, как известно, идентичный геном. Секвенирование ДНК обоих близнецов иногда показывает, что никаких различий в их геноме нет.

Давайте еще раз перечислим все факторы, которые могут повлиять на течение эмбриогенеза:

1)Генетические мутации.

2)Влияние внешних факторов.

3)Рассогласование в работе белков.

Как бы ни было трудно собаководам примириться с мыслью, что в некоторых случаях наследственная болезнь или аномалия развития у собаки есть, а виновного гена нет, но придется себя пересилить. Но и не следует злоупотреблять это информацией в том смысле, что если неприятность случилась у собак моего разведения, то это неувязки во время эмбриогенеза, а если в питомнике конкурента – это исключительно мутации и производители являются носителями неблагополучных генов.

Что же делать в этой ситуации заводчикам, как бороться за здоровое потомство, если не можешь точно узнать, по какой причине получаются подобные аномалии? Во-первых: есть статистические методы обработки информации. Во вторых, что касается самих порочных собак, то есть действенный метод –выбраковывать всех подряд, не разбираясь с причинами. В третьих –следует знать, кто или что является виновником рассогласования в работе белков.

 

 


4.3 ГЕНОТИП И ФЕНОТИП

 

Весь предыдущий материал позволяет нам совершить переход от примитивной и ошибочной «мозаичной» схемы воплощения генотипа в фенотип, к реальной «волновой» схеме. Если бы фенотип был простой суммой отдельных признаков, то графически можно представить себе это в виде огромной мозаичной картины, где каждый отдельный признак соответствует одному паззлу мозаики, а свойства каждого паззла зашифрованы в одном из генов ДНК.

Рисунок 3

На рис. 3 изображен небольшой фрагмен<



Дата добавления: 2020-06-09; просмотров: 643;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.04 сек.