Универсальные и импульсные диоды
Универсальные (высокочастотные) диоды применяются для преобразования высокочастотных сигналов. Импульсные полупроводниковые диоды предназначены преимущественно для работы в и импульсных режимах (преобразования импульсных сигналов). Эти диоды характеризуются минимальными значениями реактивных параметров, что достигается благодаря специальным конструктивно-технологическим мерам.
Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью (см. § 3.7, 3.8). Для уменьшения времени жизни используется легирование материала (например, золотом), что создает много ловушечных уровней в запрещенной зоне, увеличивающих скорость рекомбинации.
Разновидностью универсальных диодов является диод с короткой базой. В таком диоде протяженность базы меньше диффузионной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носителей в базе, а фактическим меньшим временем нахождения (временем пролета). Однако осуществить уменьшение толщины базы при большой площади р-n-перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площади являются маломощными.
В настоящее время широко применяются диоды с p-i-n-структурой, в которой две сильнолегированные области р- и n-типа разделены достаточно широкой областью с проводимостью, близкой к собственной (i-область). Заряды донорных и акцепторных ионов расположены вблизи границ i-области. Распределение электрического поля в ней в идеальном случае можно считать однородным (в отличие от обычного p-n-перехода). Таким образом, i-область с низкой концентрацией носителей заряда, но обладающей диэлектрической проницаемостью можно принять за конденсатор, «обкладками» которого являются узкие (из-за большой концентрации носителей в р- и n-областях) слои зарядов доноров и акцепторов. Барьерная емкость p-i-n-диода определяется размерами i-слоя и при достаточно широкой i-области от приложенного постоянного напряжения практически не зависит.
Особенность работы р-i-n-диода состоит в том, что при прямом напряжении одновременно происходит инжекция дырок из p-области и электронов из n-области в i-область. При этом его прямое сопротивление резко падает. При обратном напряжении происходит экстракция носителей из i-области в соседние области. Уменьшение концентрации приводит к дополнительному возрастанию сопротивления i-области по сравнению с равновесным состоянием. Поэтому для p-i-n-диода характерно очень большое отношение прямого и обратного сопротивлений, что важно при использовании их в переключательных режимах.
В качестве высокочастотных универсальных диодов используются структуры с барьерами Шотки и Мотта. В этих приборах процессы прямой проводимости определяются только основными носителями заряда. Таким образом, у рассматриваемых диодов отсутствует диффузионная емкость, связанная с накоплением и рассасыванием носителей заряда в базе, что и определяет их хорошие высокочастотные свойства.
Отличие барьера Мотта от барьера Шотки состоит в том, что тонкий i-слой создан между металлом М и сильно легированным полупроводником , так что получается структура M-i-n. В высокоомном i-слое падает все приложенное к диоду напряжение, поэтому толщина обедненного слоя в -области очень мала и не зависит от напряжения. И поэтому барьерная емкость практически не зависит от напряжения и сопротивления базы.
Наибольшую рабочую частоту имеют диоды с барьером Мотта и Шотки, которые в отличие от р-n-перехода почти не накапливают неосновных носителей заряда в базе диода при прохождении прямого тока и поэтому имеют малое время восстановления (около 100 пс).
Разновидностью импульсных диодов являются диоды с накоплением заряда (ДНЗ) или диоды с резким восстановлением обратного тока (сопротивления). Импульс обратного тока в этих диодах имеет почти прямоугольную форму (рис. 4.2). При этом значение может быть значительным, но должно быть чрезвычайно малым для использования ДНЗ в быстродействующих импульсных устройствах.
Получение малой длительности связано с созданием внутреннего поля в базе около обедненного слоя р-n-перехода путем неравномерного распределения примеси. Это поле является тормозящим для носителей, пришедших через обедненный слой при прямом напряжении, и поэтому препятствует уходу инжектированных носителей от границы обедненного слоя, заставляя их компактнее концентрироваться вблизи границы. При подаче на диод обратного напряжения (как и в обычном диоде) происходит рассасывание накопленного в базе заряда, но при этом внутреннее электрическое поле уже будет способствовать дрейфу неосновных носителей к обедненному слою перехода. В момент , когда концентрация избыточных носителей на границах перехода спадает до нуля, оставшийся избыточный заряд неосновных носителей в базе становится очень малым, а, следовательно, оказывается малым и время спадания обратного тока до значения .
Варикапы
Варикапом называется полупроводниковый диод, используемый в качестве электрически управляемой емкости с достаточно высокой добротностью в диапазоне рабочих частот. В нем используется свойство р-n-перехода изменять барьерную емкость под действием внешнего напряжения.
Значение добротности варикапа на низких частотах ;
на высоких частотах –
Температурный коэффициент емкости , где DТ и D – изменения температуры и емкости варикапа.
Для увеличения добротности варикапа используют барьер Шотки; эти варикапы имеют малое сопротивление потерь, так как в качестве одного из слоев диода используется металл.
Добротность колебательной системы характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период.
Основное применение варикапов – электрическая перестройка частоты колебательных контуров. Зависимость его емкости от напряжения отражает вольт-фарадная характеристика, подобная зависимости барьерной емкости p-n-перехода от приложенного к нему обратного напряжения. В настоящее время существует несколько разновидностей варикапов, применяемых в различных устройствах непрерывного действия. Это параметрические диоды, предназначенные для усиления и генерации СВЧ-сигналов, и ум-ножительные диоды, предназначенные для умножения частоты в широком диапазоне частот. Иногда в умножительных диодах используется и диффузионная емкость.
Дата добавления: 2016-06-29; просмотров: 1819;