В) Характеристики магнитных материалов
Основными характеристиками ферромагнетиков являются кривая намагничивания В(Н) и петля гистерезиса (рис. 24.2)
Рассмотрим процесс переменного намагничивания магнитного материала.
Для этой цели намотаем на стальной сердечник обмотку и будем по ней пропускать постоянный ток. Предположим, что сердечник электромагнита ранее не был намагничен.
Рис.25.1. Схема опыта
Увеличивая проходящий по виткам обмотки ток I от нуля, мы тем самым будем увеличивать намагничивающую силу и напряженность поля Н.
Величина магнитной индукции Всердечнике будет также увеличиваться.
Кривая намагничивания Оа имеет прямолинейную часть, а затем вследствие насыщения кривая поднимается медленно, приближаясь к горизонтали.
Если теперь, достигнув точки а , уменьшать Н, то будет уменьшаться и В. Однако уменьшение Впри уменьшении Н, т. е. при размагничивании, будет происходить с запаздыванием по отношению к уменьшению Н. Величина остаточной индукции при Н=0 характеризуется отрезком Об.
Рис.25.2. Петля гистерезиса.
Для того чтобы магнитная индукция в сердечнике стала равной нулю, необходимо намагничивать материал в обратном направлении, т. т.е. перемагничивать его.
Для этой цели направление тока в обмотке меняется на обратное. Направление магнитных линий и напряженности поля также изменяется. При напряженности поля Н=ов,индукция в сердечнике равна нулю и материал сердечника полностью размагничен.
Значение напряженности поля Н = овпри В = 0 является определенной характеристикой материала и называется задерживающей (коэрцитивной) силой.
Повторяя процесс перемагничивания, мы получаем замкнутую кривую а б в г д е а, называемую петлей гистерезиса.
На этом опыте легко убедиться, что намагничивание и размагничивание сердечника (появление и исчезновение полюсов, магнитной индукции или магнитного потока) отстают от момента появления и исчезновения намагничивающей и размагничивающей силы (тока в обмотке электромагнита
Если величина напряженности магнитного поля превышает значение, при котором наступает магнитное насыщение, т. е. Нmax > HS, то размеры петли больше не увеличиваются, растут только безгистерезисные участки (а и г см. на рис. 24.2.) Такая петля называется предельной петлей гистерезиса.
Намагничивание ферромагнитного материала, впервые помещенного в магнитное поле, происходит по линии оа. Точки в и е предельной петли гистерезиса соответствуют коэрцитивной силе Нс(-Нс), а точки б и д дают значения остаточной индукции Вг(-Вг).
Рис.25.3. Петли гистерезиса магнитомягких и магнитотвердых материалов
В зависимости от значения коэрцитивной силы все магнитные материалы принято делить на магнитомягкие (кривая 1 рис.24.3;) и магнитотвердые (кривая-2).
Магнитомягкие материалы имеют малую коэрцитивную силу и узкую петлю гистерезиса. К этой группе относят электротехническую сталь, пермаллои, ферриты. Применяют эти материалы в таких электротехнических устройствах, как электрические машины, трансформаторы, электрические аппараты и др.
Магнитотвердые материалы имеют большую коэрцитивную силу и широкую петлю гистерезиса. Будучи намагниченными, они сохраняют намагниченность и после снятия намагничивающего поля. Из таких материалов изготовляют постоянные магниты, которые широко применяются в различных устройствах.
Дата добавления: 2020-05-20; просмотров: 918;