Общие сведения о грунтах.
Грунтами называют поверхностные слои земли, образованные в результате выветривания горных пород.
Как физическое тело грунты в общем случае представляет собой многокомпонентную систему, состоящую из твердой фазы (скелета грунта), жидкой (воды) и газообразной (паров и газов). В состав мерзлых грунтов входит еще и лед. Грунты делятся на скальные (сцементированные с пределом прочности не менее 5 МПа: граниты; песчаники; известняки и т. п.); полускальные (сцементированные породы с пределом прочности до 5 МПа: мергели, окаменевшие глины, гипсоносные конгломераты и т. п.); крупнообломочные (куски скальных и полускальных пород); песчаные (несцементированные мелкие частички разрушенных горных пород размером от 0,05 до 2 мм); глинистые (размером менее 0,005 мм).
Помимо приведенной классификации грунты распределяют для производственных целей по группам в зависимости от трудности их разработки.
В СНиПе грунты разделены на одиннадцать групп трудности разработки, из которых машинная разработка предусматривается только для первых восьми категорий (вручную могут разрабатываться грунты всех категорий). Категории грунтов различают по их наименованиям и плотности. Применяется также классификация грунтов по времени бурения в них шпура глубиной 1 м. Согласно этой классификации грунты делят на одиннадцать категорий, из которых первыми тремя охватываются песчаные и глинистые, а остальными - полускальные и скальные грунты. Одна из распространенных классификаций грунтов основывается на использовании плотномера ДорНИИ. Прибор представляет собой цилиндрический стержень сечением 1 см2, на который надета гиря, массой 2,5 кг. Падая с высоты 0,4 м, гиря ударяется об упорную шайбу на стержне, заставляя его внедряться в грунт. Числом ударов гири или, что равнозначно работой для погружения стержня на 10 см, оценивается крепость грунта.
2.2. Физико-механические свойства грунтов.
По физико-механическим свойствам грунты различают в зависимости от признаков петрографии и условий залегания (минеральный состав, структура и текстура грунтов); физического состояния (гранулометрической состав, пористость, влажность, температура, теплопроводность, разрыхляемость и уплотняемость); содержащейся в них воды (пластичность, размокаемость, набухаемость, водопроницаемость, липкость); механических свойств (сцепление, сопротивление сжатию, растяжению, сдвигу, резанию, нажатию, внешнему и внутреннему трению, образивность, несущая способность).
В инженерных расчетах при проектировании МЗР чаще всего используются следующие характеристики грунтов: (таблица 2.1) плотность r (отношение массы грунта при естественной влажности грунта к его объему); разрыхляемость, которая определяется коэффициентом разрыхления грунта кр, представляющим собой отношение объема Vр разрыхленного грунта к объему грунта в его естественном залегании V, т.е. ( ); коэффициенты удельного сопротивления грунта резанию (к) и копанию (к1), определяемые как отношение усилий затрачиваемых на резание Рр или копание Рк грунта к площади вырезаемой стружки F, т.е. ; ; коэффициент внешнего трения (грунта о сталь) μ1=tg φ1, (φ1 угол трения грунта о сталь, который в условиях взаимодействия с рабочим органом машины составляет от 15 до 300, а μ 1 – соответственно от 0,27 до 0,57); коэффициент внутреннего трения (грунта о грунт) μ2= tg φ2 (φ2 – угол внутреннего трения, который в зависимости от влажности грунта может иметь значения от 28 до 450, а μ 2 – соответственно от 0,53 до 1).
2.3. Способы разработки грунтов.
Разработка грунтов всегда начинается с их разрушения, поэтому в МЗР целесообразно воплощать такие принципы воздействия на грунты, которые соответствовали бы наименьшей энергоемкости их разрушения.
Различают три основных способа разработки грунтов: механический, гидравлический и взрывной.
Механическое разрушение осуществляется сосредоточенным силовым воздействием рабочего органа (ножа, ковша, отвала и др.) на грунтовый массив. Энергоемкость разработки песчанистых и глинистых грунтов этим способом составляет от 0,05 до 0,3 кВт· ч/м3.
Гидравлическое разрушение производят размывом грунта напорной струей воды или всасыванием его со дна водоема в смеси с водой.
Для разработки грунта в этом случае требуется до 4 кВт· ч/м3 энергии и 50-60 м3 воды на 1 м3 грунта.
Взрывное разрушение происходит под давлением газов, выделяющихся при воспламенении взрывчатого вещества, которое закладывают в специально пробуренные в грунте скважины (шпуры) или прорезанные узкие щели или траншеи. Кроме названных, известны также физические и химические способы разработки грунтов.
К физическим способам относят воздействие на грунты ультразвука, тока высокой частоты, температурных изменений (прожигание, оттаивание).
Табл. 2.3. Характеристика грунтов I- IV категорий Су
Категория грунта – вид грунта | Плотность r, Т/м3 | Число ударов плотномера ДорНии | Коэффициент разрыхления кр | Удельное сопротивление, КПа | |||||
резанию | Копанию при работе к1 | ||||||||
к | Прямыми и обратными лопатами | Экскаваторами непрерывного действия | Траншеекопателями | ||||||
Поперечного копания | |||||||||
роторными | цепными | ||||||||
I- песок, супесь, мягкий суглинок, средней крепости влажный и разрыхленный без включений | 1,2-1,5 | 1-4 | 1,08-1,17 | 12-65 | 18-80 | 30-120 | 40-130 | 50-180 | 70-230 |
II – суглинок без включений, мелкий и средний гравий, мягкая влажная или разрыхленная глина | 1,4-1,9 | 5-8 | 1,14-1,28 | 58-130 | 70-180 | 120-250 | 120-250 | 150-300 | 210-400 |
III – крепкий суглинок, глина средней крепости влажная или разрыхленная, аргиллиты и алевролиты | 1,6-2,0 | 9-16 | 1,24-1,3 | 120-200 | 160-280 | 220-400 | 200-380 | 240-450 | 38-660 |
IV – крепкий суглинок со щебнем или галькой, крепкая и очень крепкая влажная глина, сланцы, конгломераты | 2,2-2,5 | 17-35 | 1,26-1,37 | 180-300 | 220-400 | 280-490 | 300-550 | 370-650 | 650-800 |
Химическое разрушение осуществляется переводом грунтов в жидкое или газообразное состояние.
Применяют также комбинированные способы разрушения грунтов: гидромеханический, термомеханический, термопневматический, электрогидравлический, газомеханический, взрывомеханический, взрывогидравлический, электротермический.
Гидромеханический способ применяют в землесосных снарядах, где разрушение грунта производят механически, например, фрезой.
Термомеханический и термопневматический способы находят применение в термобурах. При термомеханическом способе разрушение грунта происходит путем прогрева его высокотемпературной газовой струей и дальнейшего разрушения термоослабленного слоя грунта режущим инструментом. При термопневматическом бурении разрушение и удаление из скважины грунта обеспечивается только высокотемпературной газовой струей. Газовые струи в термобурах образуются при сгорании жидкого топлива и окисления (кислорода, воздуха и др.). их температура достигает 1800-20000 С, а скорость 1400 м/с.
Электрогидравлический способ разрушения грунтов основан на использовании эффекта ударной волны, образующейся в искровом разряде в жидкости. На этом принципе работают электрогидравлические установки для дробления валунов и негабаритных камней, образующихся при взрывном способе разрушения грунтов.
Газомеханический способ разрушения грунтов осуществляется путем подачи импульсами или непрерывным потоком газов под давлением в зону режущей кромки рабочего органа (отвала, ковша), которые разрыхляют грунт и уменьшают сопротивление движению рабочего органа.
Наиболее распространен механический способ разрушения, посредством которого выполняют 85-90% всего объема земляных работ. Достаточно широко применяются также гидравлический и взрывной способы. Физический и химический способы находятся еще в стадии освоения.
Дата добавления: 2016-06-29; просмотров: 3347;