Коррекция частотных характеристик
Под коррекцией частотных характеристик будем понимать изменение ЛАЧХ и ЛФЧХ для получения от устройств на ОУ необходимых свойств и, прежде всего, обеспечение устойчивой работы. ОУ обычно используется с цепями ООС, однако при некоторых условиях, из-за дополнительных фазовых сдвигов частотных составляющих сигнала, ООС может превратится в ПОС и усилитель потеряет устойчивость. Поскольку ООС очень глубокая( ), то особенно важно обеспечить фазовый сдвиг между входным и выходным сигналом, гарантирующий отсутствие возбуждения.
Ранее на рисунке 6.6 были приведены ЛАЧХ и ЛФЧХ для скорректированного ОУ, по форме эквивалентные ЛАЧХ и ЛФЧХ одиночного усилительного каскада, из которых видно, что максимальный фазовый сдвиг j<90° при , а скорость спада коэффициента усиления в области ВЧ составляет 20дБ/дек. Такой усилитель устойчив при любой глубине ООС.
Если ОУ состоит из нескольких каскадов (например, трех), каждый из которых имеет скорость спада 20дБ/дек и не содержит цепей коррекции, то его ЛАЧХ и ЛФЧХ имеют более сложную форму (рисунок 6.15) и содержит область неустойчивых колебаний.
Для обеспечения устойчивой работы устройств на ОУ используются внутренние и внешние цепи коррекции, с помощью которых добиваются общего фазового сдвига при разомкнутой цепи ООС менее 135° на максимальной рабочей частоте. При этом автоматически получается, что спад составляет порядка 20дБ/дек.
В качестве критерия устойчивости устройств на ОУ удобно использовать критерий Боде, формулируемый следующим образом: "Усилитель с цепью обратной связи устойчив, если прямая его коэффициента усиления в децибелах пересекает ЛАЧХ на участке со спадом 20дБ/дек". Таким образом, можно заключить, что цепи частотной коррекции в ОУ должны обеспечивать скорость спада ( ) на ВЧ порядка 20дБ/дек.
Цепи частотной коррекции могут быть как встроенные в полупроводниковый кристалл, так и созданными внешними элементами. Простейшая цепь частотной коррекции осуществляется с помощью подключения к выходу ОУ конденсатора достаточно большого номинала. Необходимо, чтобы постоянная времени была больше, чем . При этом сигналы высоких частот на выходе ОУ будут шунтироваться и полоса рабочих частот сузится, большей часть весьма значительно, что является существенным недостатком данного вида коррекции. Полученная в этом случае ЛАЧХ показана на рисунке 6.16.
Спад здесь не будет превышать 20дБ/дек, а сам ОУ будет устойчив при введении ООС, поскольку j никогда не превысит 135°.
Более совершенны корректирующие цепи интегрирующего (запаздывающая коррекция) и дифференцирующего (опережающая коррекция) типов. В общем виде коррекция интегрирующего типа проявляется аналогично действию корректирующей (нагрузочной) емкости. Корректирующая RC цепь включается между каскадами ОУ (рисунок 6.17).
Резистор является входным сопротивлением каскада ОУ, а сама цепь коррекции содержит и . Постоянная времени этой цепи должна быть больше постоянной времени любого из каскадов ОУ. Поскольку цепь коррекции является простейшей однозвенной RC цепью, то наклон ее ЛАЧХ равен 20дБ/дек, что и гарантирует устойчивую работу усилителя. И в этом случае цепь коррекции сужает полосу рабочих частот усилителя, однако широкая полоса все равно ничего не дает, если усилитель неустойчив.
Устойчивая работа ОУ при относительно широкой полосе обеспечивается коррекцией дифференцирующего типа. Сущность такого способа коррекции ЛАЧХ и ЛФЧХ заключается в том, что ВЧ сигналы проходят внутри ОУ в обход части каскадов (или элементов), обеспечивающих максимальный , ими не усиливаются и не задерживаются по фазе. В результате ВЧ сигналы будут усиливаться меньше, но их малый фазовый сдвиг не приведет к потере устойчивости усилителя. Для реализации коррекции дифференцирующего типа к специальным выводам ОУ подключается корректирующий конденсатор (рисунок 6.18).
Помимо рассмотренных корректирующих цепей известны и другие (см., например [2]). При выборе схем коррекции и номиналов их элементов следует обращаться к справочной литературе (например,[10]).
Дата добавления: 2016-06-18; просмотров: 2635;