Угол давления в высшей паре ( на примере плоского кулачкового механизма ).
Рассмотрим плоский кулачковый механизм с поступательно движущимся роликовым толкателем ( Рис. 11.9). Из D BPF
где
Подставляя эти выражения в формулу для тангенса угла давления, получим
где знак - соответствует смещению оси толкателя (эксцентриситету) вправо от центра вращения кулачка.
Рис. 11.9 |
Формула Эйлера - Савари.
При синтезе плоских зацеплений широко применяется формула Эйлера-Савари, которая устанавливает связь между радиусами кривизны центроид и радиусами кривизны профилей высшей пары. Эта формула записывается так
где rw1 и rw2 - радиусы кривизны центроид первого и второго звена в полюсе зацепления, ρ1 и ρ2 - радиусы кривизны профилей в контактной точке, lKP - расстояние от полюса зацепления до контактной точки, φ - угол между контактными нормалями к профилям и центроидам.
Теорема Оливье.
Теорема Оливье является основополагающей теоремой как для плоских, так и для пространственных зацеплений. Она устанавливает основные признаки определяющие свойства зацепляющихся поверхностей, вид их контакта друг с другом.
Теорема Оливье. Пусть F1 , F2 и B некоторые поверхности с определенным абсолютным движением. И пусть F1 и F2 огибающие к B в их относительном движении, где - мгновенные контактные линии. Если K1 -K1 и K2 -K2 имеют общие точки, то поверхности F1 и F2 :
- находятся в точечном контакте, если K1 -K1 и K2 -K2 пересекаются в некоторой точке K;
- находятся в линейном контакте, если K1 -K1 и K2 -K2 сливаюся в одну линию, образуя K -K.
Рис. 11.10 |
Теорема Оливье имеет три важных следствия:
Следствие 1. Если оба зубчатых колеса обработаны друг другом, т.е. первое колесо обработано инструментом режущие кромки которого копируют второе колесо, а второое - инструментом режущие кромки которого копируют первое, то эти колеса имеют взаимоогибаемые поверхности зубьев с линейным контактом поверхностей.
Следствие 2. Если оба колеса обработаны инструментами, образующими между собой конгруентную пару, то эти колеса имеют взаимоогибаемые поверхности зубьев с линейным контактом поверхностей.
Следствие 3. Если поверхность зацепления И1 инструмента 1 с колесам 1 и поверхность зацепления И2 инструмента 2 с колесам 2 совпадает с поверхностью зацепления колес 1 и 2, то зубья колес обработанных при таком условии будут иметь линейный контакт.
Дата добавления: 2020-02-05; просмотров: 624;