Кубическое представление ПФ


Будем полагать, что каждый набор n аргументов ПФ задает вершину n-мерного куба и называется 0-кубом. Определив множество 0-кубов, на которых значения функции равны единице, можно получить представление ПФ в виде кубического комплекса . Рассмотрим функцию, заданную табл. 3.7. Она может быть представлена в виде следующего кубического комплекса:

 

,

где столбцам соответствуют переменные .

Из способа построения кубического комплекса следует, что каждая ПФ может иметь единственное представление такого вида.

Для ПФ, в общем случае зависящей от n аргументов, могут быть построены кубические комплексы размерности: , , ,…, . При этом каждый комплекс строится по комплексу путем образования i-кубов из -кубов, отличающихся только по одной переменной. Переменная (координата), по которой отличаются сравниваемые кубы, называется независимой и заменяется символом «Х».

В качестве примера рассмотрим функцию

 

Для нее кубические комплексы , , и могут быть построены следующим образом:

; ; .

Поскольку кубический комплекс не содержит 2-кубов, отличающихся только по одной переменной, то кубический комплекс будет представлен пустым множеством.

Объединение кубов комплексов , , ,…, образует кубический комплекс . Таким образом,

.

Для рассмотренной выше функции можно записать в следующем виде:



Дата добавления: 2020-02-05; просмотров: 521;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.