Лекция № 7. Элементы математической логики.
Математическая логика – разновидность формальной логики, т.е. науки, которая изучает умозаключения с точки зрения их формального строения.
Определение. Высказыванием называется предложение, к которому возможно применить понятия истинно или ложно.
В математической логике не рассматривается сам смысл высказываний, определяется только его истинность или ложность, что принято обозначать соответственно И или Л.
Понятно, что истинные и ложные высказывания образуют соответствующие множества. С помощью простых высказываний можно составлять более сложные, соединяя простые высказывания союзами “и”, “или”.
Таким образом, операции с высказываниями можно описывать с помощью некоторого математического аппарата.
Вводятся следующие логические операции (связки) над высказываниями
1) Отрицание. Отрицанием (логическим “не”) высказывания Р называется высказывание, которое истинно только тогда, когда высказывание Р ложно.
Обозначается Р или .
Соответствие между высказываниями определяется таблицами истинности. В нашем случае эта таблица имеет вид:
P | Р |
И | Л |
Л | И |
2) Конъюнкция. Конъюнкцией (логическим “и”) двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинны оба высказывания.
Обозначается P&Q или РÙQ.
P | Q | P&Q |
И | И | И |
И | Л | Л |
Л | И | Л |
Л | Л | Л |
3) Дизъюнкция. Дизъюнкцией (логическим “или”) двух высказываний P и Q называется высказывание, ложное тогда и только тогда, когда оба высказывания ложны.
Обозначается PÚQ.
P | Q | PÚQ |
И | И | И |
И | Л | И |
Л | И | И |
Л | Л | Л |
4) Импликация. Импликацией (логическим следованием) двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда высказывание Р истинно, а Q – ложно.
Обозначается PÉQ (или РÞQ). Высказывание Р называется посылкой импликации, а высказывание Q – следствием.
P | Q | PÞQ |
И | И | И |
И | Л | Л |
Л | И | И |
Л | Л | И |
5) Эквиваленция. Эквиваленцией (логической равносильностью) двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинности высказываний совпадают.
Обозначается Р~Q или РÛQ.
P | Q | P~Q |
И | И | И |
И | Л | Л |
Л | И | Л |
Л | Л | И |
С помощью этих основных таблиц истинности можно составлять таблицы истинности сложных формул.
Замечание. В дальнейшем мы познакомимся с принципиально иной, более широкой трактовкой тех понятий, которые мы определили в данной лекции. Мы будем их рассматривать уже не как операции над высказываниями, но как некоторые функции. Поясним на следующем примере. Запись можно рассматривать как обозначение бинарной операции умножения переменных и , а, с другой стороны, так же обозначается функция двух переменных .
Пример 1. С помощью таблиц истинности проверить, являются ли эквивалентными формулы j и y.
Составим таблицы истинности для каждой формулы:
p | r | (pÙr) | ||
И | И | Л | И | И |
И | Л | Л | Л | И |
Л | И | И | Л | Л |
Л | Л | И | Л | Л |
p | r | ||||
И | И | Л | Л | Л | И |
И | Л | Л | И | И | И |
Л | И | И | Л | И | И |
Л | Л | И | И | И | И |
Данные формулы не являются эквивалентными.
Пример 2. С помощью таблиц истинности проверить, являются ли эквивалентными формулы j и y.
Составим таблицы истинности для заданных формул.
p | q | r | pÛq | (pÛq)Úr |
И | И | И | И | И |
И | И | Л | И | И |
И | Л | И | Л | И |
И | Л | Л | Л | Л |
Л | И | И | Л | И |
Л | И | Л | Л | Л |
Л | Л | И | И | И |
Л | Л | Л | И | И |
p | q | r | pÞq | qÞp | (pÞq)Ú(qÞp) | (pÞq)Ú(qÞp)Úr |
И | И | И | И | И | И | И |
И | И | Л | И | И | И | И |
И | Л | И | Л | И | И | И |
И | Л | Л | Л | И | И | И |
Л | И | И | И | Л | И | И |
Л | И | Л | И | Л | И | И |
Л | Л | И | И | И | И | И |
Л | Л | Л | И | И | И | И |
Из составленных таблиц видно, что данные формулы не равносильны.
Основные равносильности.
Для любых формул А, В и С справедливы следующие равносильности:
A & B º B & A; A & A º A; A & (B & C) º (A & B) & C;
A Ú B º B Ú A; A Ú A º A; A Ú (B Ú C) º (A Ú B) Ú C;
A Ú (B & C) º (A Ú B) & (A Ú C); A & (B Ú C) º (A & B) Ú (A & C);
A & (A Ú B) º A; A Ú (A & B) º A; ØØA º A; Ø(A & B) º ØA Ú ØB;
A º (A & B) Ú (A & ØB); A º (A Ú B) & (A Ú ØB);
Булевы функции.
Определение. Булевой функциейf(X1, X2, …, Xn) называется произвольная n – местная функция, аргументы и значения которой принадлежат множеству {0, 1}.
Вообще говоря, между логическими высказываниями, логическими связками и булевыми функциями просматривается явная аналогия (подробнее она рассматривается в следующей лекции). Если логические функции могут принимать значения истинно или ложно, то для булевой функции аналогами этих значений будут значения 0 или 1.
Для булевых функций также можно составить таблицы значений, соответствующим основным логическим операциям.
X1 | X2 | ØX1 | X1&X2 | X1ÚX2 | X1ÞX2 | X1ÛX2 |
Дата добавления: 2016-06-05; просмотров: 2658;