ФИЗИОЛОГИЯ ВНИМАНИЯ

 

Принцип доминанты был сформулирован А. А. Ухтомским. Этот принцип играет важную роль в согласованной работе нервных центров. Д о м и на н та – временно господствующий очаг возбуждения в центральной нервной системе, определяющий характер ответной реакции организма на внешние и внутренние раздражения.

Доминантный очаг возбуждения характеризуется следующими основными свойствами: 1) повышенной возбудимостью; 2) стойкостью возбуждения; 3) способностью к суммированию возбуждения; 4) инерцией – доминанта в виде следов возбуждения может длительно сохраняться и после прекращения вызвавшего ее раздражения.

Доминантный очаг возбуждения способен притягивать (привлекать) к себе нервные импульсы от других нервных центров, менее возбужденных в данный момент. За счет этих импульсов активность доминанты еще больше увеличивается, а деятельность других нервных центров подавляется.

Доминанты могут быть экзогенного и эндогенного происхождения. Экзогенная доминанта возникает под влиянием факторов окружающей среды. Например, при чтении интересной книги человек может не слышать звучащую в это время по радио музыку.

Эндогенная доминанта возникает под влиянием факторов внутренней среды организма, главным образов гормонов и других физиологически активных веществ. Например, при понижении- содержания питательных веществ в крови, особенно глюкозы, происходит возбуждение пищевого центра, что является одной из причин пищевой установки организма животных и человека.

Доминанта может быть инертной (стойкой), и для ее разрушения необходимо возникновение нового более мощного очага возбуждения.

Доминанта лежит в основе координационной деятельности организма, обеспечивая поведение человека и животных в окружающей среде, эмоциональных состояний, реакций внимания. Формирование условных рефлексов и их торможение также связано с наличием доминантного очага возбуждения.

 

ФИЗИОЛОГИЯ ВНИМАНИЯ

 

Мотивационное возбуждение, побуждающее к определенному целенаправленному поведению, обнаруживает свойство инертности. Оно длительно сохраняется, пока не будет удовлетворена породившая его потребность. Все посторонние раздражители только усиливают его, тогда как все другие виды деятельности подавляются мотивацией, которая реализуется в данном поведении. Мотивационное возбуждение, которое реализуется в поведении, получило название доминирующей мотивации. По этим свойствам мотивационное возбуждение тождественно явлению доминанты А.А.Ухтомского [10].

Сходство мотивационного возбуждения с доминантой проявляется не только на поведенческом уровне. Применение нейрофизиологических методов показало, что во время мотивационного возбуждения и доминанты наблюдаются сходные изменения, как в электрической активности мозга, так и в реакциях нейронов.

Наиболее перспективным оказалось изучение моделей доминанты, создаваемых электрической или химической стимуляцией мозга. В.С.Русиновым [7] при создании искусственной доминанты использовалась анодная поляризация поверхности коры или воздействие на нее пульсирующим током. В этих опытах электрод с пульсирующим током обычно прикладывался к моторной коре. Сила тока была подпороговой и не вызывала движения конечности. Однако если к этой стимуляции добавить болевое подпороговое раздражение, то можно обнаружить, что пульсирующий подпороговый ток приобретает способность вызывать двигательные реакции животного, которые следуют в его ритме. Пульсирующие движения сохраняются в течение некоторого времени, и после отключения токового раздражения. Это указывает, что в моторной коре создан очаг повышенной возбудимости со всеми свойствами доминанты (инертностью и способностью усиливаться за счет других возбуждений). В случае, когда доминанта в моторной коре создается с помощью анодной поляризации, показателем ее сформированности служит появление двигательных реакций конечности животного на индифферентные стимулы (звук, свет).

С возникновением искусственной доминанты растет негативность постоянного потенциала, регистрируемого от коры больших полушарий. Аналогичное изменение постоянного потенциала коры возникает во время ЭЭГ-реакции активации. Так его можно зарегистрировать от коры животного во время ориентировочного рефлекса, а также в ответ на электрическую стимуляцию активирующей ретикулярной формации среднего мозга и неспецифического таламуса. Возрастание негативности постоянного потенциала (ПП) можно получить и стимуляцией мотивационных центров гипоталамуса, вызывающей у животных целенаправленное мотивационное поведение.

Таким образом, сходное возрастание негативности ПП во время искусственной доминанты и мотивации указывает на повышение возбудимости структур мозга – свойство, которое, по А.А.Ухтомскому [10], характерно для каждой естественной доминанты.

Сама анодная поляризация коры меняет не только фоновую активность, но и реакции нейронов на стимулы. У ранее ареактивных нейронов в ответ на световые раздражения возникают реакции учащения спайков, увеличивается интенсивность реакции у ранее реагировавших нейронов, тормозные реакции нейронов сменяются на возбудительные. Аналогичные изменения нейронов коры наблюдаются при электрической стимуляции мотивационных центров гипоталамуса. По данным Ю.Н.Хаютина, электрическая стимуляция центра голода в гипоталамусе сопровождается ростом лабильности у нейронов зрительной коры. Они начинали воспроизводить своими ответами более высокую частоту световых мельканий, чем раньше. Таким образом, у нейронов, охваченных мотивационным возбуждением, так же как и находящихся в центре доминанты, растет возбудимость и лабильность.

Доказано, что доминирующее мотивационное возбуждение существенно изменяет интегративные свойства нейронов различных структур мозга и прежде всего их конвергентные способности.

Под влиянием электрической стимуляции гипоталамического центра голода, инициирующей мотивационное пищевое поведение, большинство нейронов сенсомоторной коры кролика, ранее не реагировавшие на световые, звуковые, гуморальные, а также биологически значимые раздражения, приобретали способность реагировать на эти раздражения. Только небольшое число нейронов не изменяют конвергентные свойства или даже снижают их. Анодическая поляризация латерального гипотеламуса вызывает противоположный эффект – ухудшение конвергентных свойств нейронов. Это говорит о том, что конвергентные свойства нейронов коры в значительной степени зависят от восходящих активизирующих влияний гипоталамуса. Сходные изменения у нейронов обнаружены и при искусственной доминанте.

Усиление конвергентных способностей нейронов объясняет такие свойства доминанты, как ее повышенная возбудимость и способность суммировать приходящие возбуждения.

Доминирующая мотивация сходна с доминантой также тем, что она имеет в своей основе возбуждение некоторой функциональной констелляции центров, расположенных на различных уровнях ЦНС. К.В.Судаков [9] корково-подкорковый уровень интеграции мотивационного возбуждения. В этой интеграции одни структуры избирательно возбуждены, другие заторможены. При пищевой мотивации кролика, вызванной электрической стимуляцией так называемого центра голода латерального гипоталамуса, тогда как затылочная кора и ретикулярная формация среднего мозга, наоборот, активирует гипоталамический центр голода.

При оборонительной мотивации у кролика, вызванной электрическим раздражением вентромедиального гипоталамуса, сенсорные и затылочные отделы коры, в которых появляется тета-ритм, как ЭЭГ-паттерн оборонительного возбуждения, также оказывают тормозные влияния на свой инициативный мотивационный центр гипоталамуса.

Интегративный корково-подкорковый комплекс мотивационного возбуждения активируется либо метаболической потребностью, либо специальными (ключевыми) стимулами, а у человека и социально значимыми. На уровне нейронов интеграция различных образований мозга в единую систему определенной биологической мотивации проявляется в появлении у нейронов общего единого ритма. По данным К.В.Судакова [9], во время различных форм мотивации (пищевой, оборонительной) у многих нейронов в самых разных структурах мозга регистрируется ритмическая активность в виде пачек спайков, регулярно следующих с интервалом около 150 мс. Пачечный тип активности с одним общим ритмом у многих нейронов рассматривается как механизм установления межцентральных связей.

Согласно А.А.Ухтомскому [10], усвоение единого ритма нервными центрами (принцип изолабильности) является механизмом их объединения в функциональную единую констелляцию. Эта точка зрения разделяется многими исследователями. Значительный вклад в развитие идеи А.А.Ухтомского [10] об изолабильности как основном механизме установления корковых взаимосвязей внес М.Н.Ливанов [5]. Им было показано существование положительной Корреляции между скоростью выработки условного двигательного рефлекса на свет и степенью синхронности ритмических потенциалов в зрительной и двигательных областях, т.е. в структурах, заинтересованных в формировании данного условного рефлекса. Электрическое раздражение активирующей ретикулярной формации и гипоталамуса также порождает высокую синзронизацию электрической активности коры и подкорковых образований, а также различных областей коры головного мозга на частоте тета-ритма у кролика. Со сном синхронизация в электрической активности коры и подкорковых структур падает.

Взаимодействие различных видов поведения строится на основе открытого А.А.Ухтомским [10] принципа доминанты.

В каждый данный момент времени деятельность организма определяется доминирующей в плане выживания и адаптации мотивацией. После завершения одного мотивированного поведения организмом завладевает следующая по социальной и биологической значимости мотивация. Ведущая мотивация подчиняет себе все другие. При формировании доминирующего поведения внутреннее состояние животного и человека и внешние стимулы нередко могут приходить в столкновение. Наиболее отчетливо это выступило при изучении роли обстановочной афферентации.

В опытах Х.Дельгадо с телеметрическим управлением поведением животных посредством электрической стимуляции через вживления в мозг электроды показано, что поведение, вызываемое электрическим раздражением структур мозга, зависит также и от той среды, в которой содержится животное. В лабораторных условиях электрическая стимуляция латерального гипоталамуса обычно вызывает стандартную пищевую реакцию (поедание пищи) даже у сытого животного. Однако эта же стимуляция у обезьяны, содержащейся среди своих сородичей, может вызвать совсем другое поведение: оборонительное или половое. И это зависит от того, какое поведение демонстрируют другие особи стада. Т.е. возбуждение, возникающее на обстановку, может оказаться более сильным, нежели то, которое вызывается электрической стимуляцией «центра голода». Доминирует и усиливается за счет других очагов возбуждения либо возбуждение, вызванное электрической стимуляцией мотивационного центра, либо возбуждение от внешних раздражителей. Возбуждение, которое станет доминирующим, и определит, какое поведение будет осуществлено.

 

Литература

1. Анохин П.К. Биология и нейрофизиология условного рефлекса. М.,1968.

2. Асратян Э.А. Рефлекторная теория высшей нервной деятельности // Избранные труды. М., 1983.

3. Данилова Н.Н., Крылова А.Л. Физиология высшей нервной деятельности: Учебник. – М.: Учебная литература, 1997. – 432с.

4. Котляр Б.И. Пластичность нервной системы. М., 1986.

5. Ливанов М.Н. Пространственная организация процессов головного мозга. М., 1972.

6. Ониани Т.Н. Интегративная функция лимбической системы. Тбилиси, 1980.

7. Русинов В.С. Доминанта как фактор следообразования в ЦНС // Механизмы памяти. Л., 1987.

8. Симонов П.В. Мотивированный мозг. М., 1987.

9. Судаков К.В. Системная организация целостного поведенческого акта // Физиология поведения. Л., 1987.

10. Ухтомский А.А. Учение о доминанте. Собр. соч.: В 6 т. Л., 1950 –1952.

 

ПАМЯТЬ И НАУЧЕНИЕ

 

1. Временная организация памяти

2. Структурно-функциональные основы памяти и обучения

3. Клеточные и молекулярные механизмы обучения и памяти

 

Основу адаптивного (индивидуального) поведения составляют два процесса - обучение и память. В неврологической памяти выделяют генотипическую (врожденную) память, которая обусловливает становление безусловных рефлексов, инстинктов, Импринтинга, и фенотипическую память, мозговые механизмы которой обеспечивают обработку и хранение информации, приобретаемой живым существом в процессе индивидуального развития. Обучение и память считают неотделимыми процессами. Обучение обеспечивает постоянное пополнение и изменение знаний, приобретение новых навыков. С физиологической точки зрения научение - это результат совпадения двух сознательных или бессознательных процессов в головном мозге. В отличие от обучения процессы памяти ответственны не только за усвоение (фиксацию) информации, ее сохранение, но и включает механизм воспроизведения (извлечения) информации. Благодаря механизму воспроизведения обеспечивается доступ и использование хранящейся информации. О механизме извлечения информации известно лишь то, что он основан на ассоциациях, подобных тем, какие образуются при научении. Исследование механизма индивидуальной памяти, по существу, представляет собой значительную часть области изучения механизмов различных видов обучения. Память и обучение имеют общую особенность - необходимость повторения. Как научение основано на многократном сочетании одних и тех же стимулов. так и для образования следа памяти требуется повторение одной и той же информации.

Временная организация памяти

Первоначально по длительности хранения прошедших событий память рассматривали как два последовательных этапа - кратковременная память (КП) и долго- временная память (ДП) и связывающий их процесс консолидации (постепенное самоусиление следа). Последующее накопление фактических данных привело к усложнению этой последовательной схемы (рис. 1) путем включения в нее сенсорной (перцептивной, иконической) памяти, представляющей собой непосредственный след возбуждения в сенсорной системе от внешнего воздействия.

Психологические исследования показали, что у человека процессы памяти проявляются в двух формах: логически-смысловой и чувственно-образной. Первая оперирует в основном понятиями и является высшей, вторая - представлениями. Чувственно-образная память подразделяется на зрительную, слуховую, вкусовую, обонятельную и другие виды. Кроме перцептивной, кратковременной и долговременной видов памяти была выделена промежуточная, или лабильная память, в которой осуществляется избирательное удержание информации на время, необходимое для выполнения текущей деятельности. Таким образом, процессы памяти человека проходят по крайней мере четыре стадии.

Сенсорная память связана с удержанием сенсорной информации (доли секунд) и служит первичному анализу и дальнейшей обработке сенсорных событий. Во время этой стадии непрерывный поток сигналов организуется в отдельные информационные единицы (через гностические нейроны), часть из которых получает доступ (ввод) в долговременную память (пунктирная линия на рис.1), где она сохраняется неопределенно длительное время. Остальная информация из сенсорной памяти устраняется путем спонтанного разрушения или “стирания” при поступлении новой. Сенсорный след занимает больше времени, чем само воздействие, из-за задержек и переключений в центральной нервной системе. Поэтому длительность сохранения следов в сенсорной памяти составляет 0,1 - 0,5 с. Главной ее особенностью является относительно неограниченная емкость. Это обеспечивает возможность эффективного функционирования других видов памяти путем выбора, фиксации и переработки наиболее важной для организма информации.

 

Судьба отобранного для хранения материала определяется его характером. Невербальная информация из сенсорной памяти поступает во вторичную память (промежуточную), где она может храниться от нескольких минут до нескольких лет. Вербальная (речевая) информация передается в первичную (кратковременную) память -- систему хранения (на период в несколько секунд) с ограниченной емкостью (примерно 7±2 бита). вербальный материал требует более длительной “активации”, повторения и, лишь пройдя повторные циклы через первичную память, поступает во вторичное хранилище. Эффективность переноса возрастает с увеличением времени обработки информации в первичной памяти. Существенным фактором в организации вторичной памяти является значимость информации для индивидуума. Эта особенность находит отражение в характере ошибок при воспоминании. Если во время считывания из первичной памяти ошибки состоят в использовании близких звуков, то при извлечении материала из вторичной памяти ошибки представлены конструкциями со сходными значениями. Во вторичной памяти фиксируются пространственно-временные отношения элементов материала, поступающего на хранение. Наиболее прочное удержание информации обеспечивает третичная (долговременная) память. Здесь фиксируются персональные данные, способность к чтению, письму, профессиональные навыки. Этот вид памяти более устойчив к мозговым повреждениям.

Психологические исследования последних лет подтверждают существование промежуточной или лабильной памяти. Действительно, как уже указывалось, объем краткосрочной памяти весьма невелик (7±2 единицы), хотя эти информационные единицы могут меняться в зависимости от организации материала; объем краткосрочной памяти явно недостаточен для обеспечения записи в долговременную память непрерывного потока важной внешней и внутренней информации. Принято считать, что промежуточная память обладает большей емкостью, чем кратковременная, и сохраняет информацию в течение нескольких часов без повторения.

Существует предположение, что очищение регистра памяти происходит во время сна, когда кратковременная память не занята поступающей внешней информацией. Обработка и перевод информации из промежуточной в долговременную память - в два этапа. Первый этап - логическая обработка информации (происходит в период сна, дельта -сна). Второй этап - ввод обработанной информации в долговременную память (осуществляется в период быстрого сна, когда на ЭЭГ появляется активность, соответствующая состоянию бодрствования).Это далеко не саамы убедительные представления. В других источниках можно найти более глубокие и обоснованные выводы.

Для развития представлений о физиологии памяти имели существенное значение клинические и экспериментальные наблюдения о нарушениях или потере памяти на события, непосредственно предшествовавшие поражению мозга или электрошоковой терапии. Такой вид нарушения памяти получил название ретроградной амнезии. Самым распространенным способом вызова экспериментальной амнезии у животных является применение шока. Уже в первой работе С.П. Дункана, опубликованной в 1948 г., было показано четкое ретроактивное действие электрошока на выработанный условный рефлекс. Градиент (длительность) ретроградной амнезии не превышал 10 м, выраженность амнезии была обратно пропорциональной величине интервала между завершением обучения и моментом нанесения электрошока. Амнестический эффект в значительной степени зависит от сложности навыка, которому животное обучалось. Например, для условнорефлекторного научения реакции избегания крысы максимальный амнестический эффект возникает, когда “конвульсии” следовали не позднее чем через 15 м после научения. Но эффект практически исчезает, когда интервал между выработанным условным рефлексом и амнестическим воздействием увеличивался до 1 ч. При этом забывание упроченных навыков не возникает. В последующих работах эти факты неоднократно подтверждались, хотя градиент ретроградной амнезии варьировал от долей секунд до многих часов. Ретроградная амнезия может быть следствием электрической стимуляции некоторых областей мозга человека и животных; она наблюдается в результате введения некоторых фармакологических (особенно наркотических) веществ, возникает также при гипо- и гипертермии, гипер- и анаксемии. При этом память на давно прошедшие события не страдает.

Таким образом, фенотипическая память человека и животных реализуется как минимум двумя мозговыми механизмами. Представление о двойной природе памяти было выдвинуто на основе психологических исследований ретроактивного торможения (забывания, возникающего в условиях интерферирующих воздействий). С физиологической точки зрения память стали рассматривать как развернутый во времени процесс, развивающийся в виде последовательности двух этапов кратковременной и долговременной памяти. Кратковременная память представляется как период неупроченных следов в нервной системе, подверженных “необратимым” разрушениям амнестическими воздействиями. Тот период времени, в течение которого след упрочивается, становится нечувствительным к внешним и интерферирующим воздействиям, составляет период консолидации.

Одной из первых гипотез о механизме кратковременной памяти является гипотеза реверберации. Анатомическим обоснованием этой идеи служили классические данные Лоренто, но о наличии в ткани мозга замкнутых нейронных цепочек. Вполне допустимо, что по замкнутым нейронным сетям мозга может осуществляться реверберация (циркуляция) импульсной активности в течение нескольких минут. Этого времени повторного пробега импульсов по замкнутым нейронным контурам должно быть достаточно для синаптических процессов, переводящих динамический импульсный код в структурные изменения мембран постсинаптических нейронов.

Гипотеза реверберации как основа обучения в последние годы потеряла свою популярность. Возражения ряда исследователей сводятся к тому, что амнестические воздействия должны необратимо разрушать “реверберирующие следы” кратковременной памяти.Это умозрительные предположения не учитывают, что внимание, переключаясь на другие области, закрывает доступ к реверберирующим участкам.То, что реверберация происходит сомневаться не приходится. А значит, в это время остаются следы воспринятого.В этом случае ретроградная амнезия и забывание должны стать необратимыми. Однако достоверно известно, что после амнестических воздействий, нанесенных в фазу формирования кратковременного следа после “конвульсий”, постепенно происходит полное восстановление памяти на забытые события, воспоминание которых может быть ускорено методом “напоминания”, кроме того, наблюдается восстановление памяти под воздействием второго злекгрошока, а также возможно самопроизвольное восстановление выработанного обучения. На основании этих фактов участие реверберационных процессов в механизмах памяти многими авторами полностью отрицается. Экспериментальные данные в пользу такого механизма памяти пока отсутствуют.

Относительно природы кратковременной памяти высказывается предположение о двухэтапном развитии ее процессов. Выделив собственно кратковременную память, устойчивую к электрошоку и гипоксии, и промежуточную, чувствительную к этим воздействиям, было показано, что в основе этих двух этапов краткосрочной памяти лежат разные по своей природе метаболические процессы, причем электрические сигналы запускают биохимические процессы.

Электрофизиологическими и биохимическими методами исследований было показано, что процессы развития кратковременных и долговременных следов могут возникать одновременно, сосуществуя в период образования и укрепления временной связи (энграммы). Вот это абсолютно правильно! В то же время приводятся данные, что в ряде случаев на ранних стадиях обучения функционируют преимущественно механизмы кратковременной памяти, подготавливая основу для долгосрочного хранения условнорефлекторного замыкания. Специальные опыты показывают, что удельный вес этих видов памяти различен на разных этапах запечатления памятного следа, как, впрочем, различны и механизмы, лежащие в основе кратковременной и долговременной памяти.

В последние годы наибольшее предпочтение отдается гипотезам, представляющим память как единовременный процесс формирования и закрепления энграммы для длительного хранения. Развитию этих идей предшествовала работа А.М. Шнейдера и В.Б. Шермана, опубликованная в 1968 г. Применив методику реактивации следа памяти, они впервые по- казали, что для амнестического забывания существенным является не время между обучением и электрошоком, а время между воспроизведением следа памяти и электрошоком. Позднее различными экспериментами было показано, что электрошок может вызывать амнестическое забывание даже прочных памятных следов, если он наносится сразу после стимула (например, условнорефлекторного сигнала), воспроизводящего давно выработанное обучение, т.е. активирующего следы памяти. Все эти данные интерпретируются как свидетельство того, что ретроградная амнезия в результате электрошока, а также, вероятно, из-за травматических повреждений является скорее результатом потери возможности воспроизведения следов памяти, чем нарушением механизмов кратковременной памяти.Долговременные следы не успевают закрепиться по месту прерванной реверберации.

Предполагается, что мнестическое забывание у человека также связано не с разрушением энграммы памяти, а с их временным переводом в подпороговое состояние, вследствие чего они становятся недоступными для произвольною извлечения. В то же время эти следы носят обратимый характер и при подсказке (методом “напоминания”) или спонтанно могут актуализироваться.

По одной из гипотез, получивших широкий резонанс, ввод информации в мозг сопровождается возникновением энграммы. Эта энграмма сама по себе недолговечна и закрепляется лишь при достаточной интенсивности модулирующих процессов, вызванных воздействием сопутствующих неспецифических реакций (ориентировочных, эмоциональных). Закрепление осуществляется параллельно через соответствующие структурнобиохимические изменения на клеточном, субклеточном и молекулярном уровнях. С точки зрения этой гипотезы кратковременная память представляет собой процесс затухания (при условии отсутствия или слабости неспецифической активации). Она участвует в закреплении энграммы за счет преобразования синапсов (избирательное повышение эффективности синаптической передачи), а также повышении возбудимости постсинаптических нейронов, задействованных данной информацией.

Другой привлекающий внимание вариант современной гипотезы, предложенной в 1984г. И.А. Корсаковым и Н.К. Корсаковой, состоит в том, что фиксация следа памяти происходит “мгновенно”, по типу импринтирования (запечатления, одномоментного обучения), а время, необходимое для упрочения знаний, требуется главным образом для формирования программы воспроизведения. Кратковременная память представляет собой следовое воспроизведение материала, уже зафиксированного в памяти (т.е. это тот этап, когда человек осознает информацию). В программу воспроизведения должны быть включены оценочные признаки (значимые, ситуационные, временные), а также эмоциональные характеристики информации. Сопутствующие признаки фиксируемой информации могут иметь ключевое значение в программе воспроизведения. Так, чтобы помочь вспомнить, пользуются методом “напоминания”, подсказки. Животному обычно создают ту же экспериментальную ситуацию или предъявляют часть информации, или эмоциональный фон, на котором проводилось обучение. Авторы предполагают, что именно формирование программы воспроизведения и принимается нередко за процесс консолидации.

Таким образом, временная организация обучения и памяти - это не просто организованная во времени совокупность нейробиологических событий, а много- компонентный процесс, включающий оценку значимости поступившей в мозг информации и реализацию организующей роли фактора времени. Традиционно выделяемые долговременная память и различные формы недолговременной памяти (сенсорная, кратковременная и промежуточная память) могут, по-видимому, рассматриваться как перекрывающиеся этапы жизни единой энграммы, складывающейся из специфических и неспецифических компонентов.

Структурнфункциональные основы памяти и научения

Каждый вид памяти (сенсорная, кратковременная и долговременная) с функциональной точки зрения обеспечивается мозговыми процессами разной сложности и механизмами, связанными с деятельностью различных систем мозга, которые в свою очередь связаны как струкгурно, так и функционально. Память выступает то как динамическая функция, развивающаяся во времени, то как сложно организованная материальная структура, локализованная в пространстве мозга. Характеристика функциональных систем (“функциональных органов”, по А..А. Ухтомскому), складывающихся из различных мозговых образований в процессе фиксации энграммы, реализации функции памяти, и составляет структурно-функциональную основу памяти и обучения.

Выявление топографии систем, реализующих энграмму, связано с большими трудностями из-за динамизма и широкой распределенности. Формирование энграммы есть сложная динамическая структура, в которой участвует обширный круг мозговых образований, но каждое из них играет особую роль в реализации тех или иных видов нервной деятельности, осуществляя свой временной и функциональный вклад. Пред- полагается, что в процессе обучения в корково-подкорковых структурах формируется модель пространственного распределения совозбужденных структур и при включении пускового стимула (условного, обстановочного, мотивационного, словесного и др.) воспроизводится энграмма совозбужденных пунктов, определяющая конечный специфический результат условнорефлекторной деятельности.

В основе объединения различных мозговых образований в определенные функциональные системы памяти могут лежать разные исходные принципы. Одним из наиболее глобальных принципов является выделение структур, которые входят в собственно систему памяти, т.е. участвующих в хранении запомненной информации, и систему структур, образующих регуляторную (модулирующую) систему памяти. В реализации этого подхода значительные трудности составляет выявление макроструктур, в которых может быть локализована целостная энграмма, а не ее отдельные компоненты. На это в 1950 г. указывал К.С. Лешли в своей известной работе “В поисках энграммы”. Проблема локализации энграммы остается одной из сложнейших и, по существу, далекой от решения. К регуляторным механизмам памяти относят те структуры, вмешательства в деятельность которых приводят к изменению функции памяти. Система регуляции памяти включает два уровня: неспецифический (“общемозговой”) и модально- специфический (“региональный”). К модально-специфическому уровню модуляции памяти относят различные отделы новой коры, за исключением лобной коры. К неспецифическому уровню регуляции процессов памяти относят ретикулярную формацию (мезэнцефалическую), гипоталамус, ассоциативный таламус, гиппокамп и лобную кору. Тесная функциональная связь звеньев неспецифической и специфической систем модуляции памяти, по существу, включает их сепаратное функционирование. Это означает, что любая форма модуляции памяти включает неспецифические и специфические компоненты в их динамическом взаимодействии .

Фиксация информации событий внешнего мира в их пространственной и временной взаимосвязи требует известного времени, т.е. представляет собой многоэтапный процесс. Первый этап формирования энграммы связан с возникновением сенсорных следов, составляющих содержание сенсорной памяти. Они возникают за счет деятельности сенсорных систем, анализаторов, оптимальный уровень функционирования которых обеспечивается активирующими системами мозга. Одновременно с приходом сенсорной информации в корковые зоны наступает второй этап, определяющий кратковременную память. На данном этапе осуществляется процесс сортировки сенсорных сигналов, выделения из них новой для организма информации. Это происходит через включение механизма ориентировочного рефлекса, который в основном обеспечивает взаимодействие модально-специфических (анализаторных) систем с гиппокампальной формацией с ее большим и малым лимбическими кругами. По концепции О.С. Виноградовой, гиппокампальная система выполняет роль специального предварительного устройства, не допускающего жесткой фиксации всех случайных следов и способствующего наилучшей организации классификационной системы хранения следов в долговременной памяти. В долговременной памяти (третий этап) в основном фиксируются события, значимые для организма. Отбор значимых событий среди новых, выделенных гиппокампальной системой, осуществляет система подкрепления, которая представлена сложным эмоционально-мотивационным аппаратом. Долговременная память формируется при непременном участии систем подкрепления, т.е. она имеет условнорефлекторную природу. Долговременная память активно вовлекается в деятельностный процесс в период выделения гиппокампальной системой новых сигналов, сфокусированных в текущем “поле сознания”, и оценивает значимость этих сигналов в отношении их способности к удовлетворению потребностей организма. значимое в положительном или отрицательном отношении фиксируется в долговременной памяти. На этом последнем этапе следовые процессы переходят в устойчивую структуру. В этом звене фиксации энграммы молекулярные процессы на клеточном и субклеточном уровне играют ключевую роль. Значимость при формировании памяти имеет ключевую роль.

В отношении мозгового аппарата памяти сложилось представление, что, подобно другим высшим функциям, память организована по полисистемному принципу. Н.П. Бехтерева, обобщая многочисленные данные по электростимуляции мозга человека, приходит к принципиальному заключению, что, “хотя существуют зоны мозга, имеющие тесную связь с процессами памяти, данные записи физиологических показателей мозга и его электрической стимуляции свидетельствуют об организации по распределенному принципу... Создается впечатление не просто о системном характере организации памяти, а о множестве систем, обеспечивающих различные виды и различные фазы для каждой памяти, имеющие общие для всех и различные для каждой из них звенья”. Основанием для отнесения той или иной структуры к системе памяти считают степень влияния этой структуры на закрепление результатов обучения в одном и том же опыте при ее выключении. Фактически, значимость, управляя вниманием, т.е. открывая те или иные зоны мозга, и обеспечивает в них актуальность закрепления следов.

Как показало большинство исследований, повреждение или удаление участков конвекситальной мозговой коры приводит к развитию избирательных, модально-специфических дефектов памяти, касающихся только тех видов стимулов, которые воспринимаются, перерабатываются и, возможно, сохраняются в корковом поле анализатора. При локальных поражениях ассоциативных корковых зон наблюдаются частичные двигательные, зрительные, слуховые и другие амнезии, в основе которых лежит распад ранее упроченных условнорефлекторных связей, т.е. нарушается долговременная память. Установлено, что при поражении коры особенно затруднено запоминание и хранение более сложного и менее эмоционально значимого материала. Предполагается, что височная ассоциативная кора, нейронам которой свойственны гностические характеристики (унитарное восприятие), может принимать участие в формировании и, возможно, хранении образной памяти. Феномены непроизвольного воспоминания пациентами далеких событий были продемонстрированы в работах У. Пенфилда, провод






Дата добавления: 2016-06-05; просмотров: 2822;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2020 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.031 сек.