Влияние различных факторов на тормозные свойства


Автомобиля

На тормозные свойства автомобиля оказывают влияние раз­личные конструктивные и эксплуатационные факторы. К ним от­носятся конструкция тормозных механизмов и их техническое состояние, состояние дорожного покрытия и протекторов шин, распределение тормозных сил по колесам автомобиля, примене­ние регуляторов тормозных сил и антиблокировочных систем, способы служебного торможения и др. Рассмотрим влияние ука­занных факторов на тормозные свойства.


Тормозные механизмы и их техническое состояние.Тормозные свойства автомобиля во многом зависят от типа тормозных меха­низмов и их технического состояния. В передних и задних колесах грузовых автомобилей и автобусов применяют барабанные тор­мозные механизмы (рис. 7.6, а). В передних колесах легковых авто­мобилей используют дисковые тормозные механизмы (рис. 7.6, б),а в задних колесах — барабанные.

При торможении более эффективными являются барабанные тормозные механизмы, а более стабильными — дисковые. Диско­вые тормозные механизмы по сравнению с барабанными имеют меньшую массу, более компактны и лучше охлаждаются. Однако у них быстрее изнашиваются фрикционные накладки колодок, и они хуже защищены от загрязнения.

Техническое состояние тормозных механизмов серьезно влия­ет на эксплуатационные свойства автомобиля. От технического состояния во многом зависит безопасность движения. Так, напри­мер, самой распространенной причиной дорожно-транспортных происшествий, возникающих из-за технической неисправности автомобиля, является неудовлетворительное состояние тормозных механизмов (замасливание, загрязнение, износ, нарушение регу­лировки и др.). Как показывает статистика дорожно-транспорт­ных происшествий, около 15% общего числа аварий с гибелью людей происходит вследствие неисправности тормозных механиз­мов.

Дорожное покрытие и протекторы шин.Состояние дорожного покрытия и протекторов шин определяет возможность реализо­вать создаваемую тормозными механизмами тормозную силу ав­томобиля, значение которой зависит от силы сцепления колес с дорогой.


Рис. 7.6. Схемы барабанного (а) и дискового (б) тормозных механизмов: 1,4— тормозные колодки; 2 — тормозной барабан; 3 — тормозной диск

Новое дорожное покрытие имеет шероховатую поверхность, и ее микроскопические выступы увеличивают сцепление шин с до­рогой. При износе дорожного покрытия микронеровности его по-


Рис. 7.7. Зимний рисунок протектора шины (а) и шипы противосколь­жения (б):

1 — сердечник; 2 — корпус

верхности сглаживаются и коэффициент сцепления колес с до­рогой уменьшается. Зимой на заснеженных и обледенелых дорогах коэффициент сцепления существенно снижается, и для его уве­личения необходимо использовать шины с зимним рисунком про­тектора и ошипованные шины (рис. 7.7).

Регуляторы тормозных сил.Наибольшая интенсивность тормо­жения автомобиля достигается при полном использовании сцеп­ления всеми колесами автомобиля, что возможно только при оп­тимальном распределении тормозных сил по колесам. Поэтому для торможения автомобиля в любых дорожных условиях с мак­симальным замедлением необходимо, чтобы тормозные силы на колесах автомобиля всегда были пропорциональны нагрузкам на колеса. Это достигается при помощи регулятора тормозных сил, который изменяет значение тормозной силы в зависимости от нагрузки на задний ведущий мост. При этом исключается занос (юз) колес моста, повышаются устойчивость автомобиля и без­опасность движения.

Антиблокировочные системы.Такие системы устраняют блоки­ровку колес автомобиля при торможении, регулируют тормозной момент и обеспечивают одновременное торможение всех колес автомобиля. При этом достигается оптимальная эффективность торможения (минимальный тормозной путь) и повышаются ус­тойчивость автомобиля и безопасность его движения.

Эффективность торможения с антиблокировочной системой (АБС) зависит от схемы установки ее элементов. Наиболее эф­фективной является АБС с отдельным регулированием колес ав­томобиля (рис. 7.8, а). В этом случае на каждое колесо установлен отдельный датчик 2 угловой скорости, а в тормозном приводе к колесу — отдельный модулятор 3 давления и блок управления 1. Однако такая схема установки АБС наиболее сложная и дорого­стоящая.

В более простой схеме установки элементов АБС (рис. 7.8, б)используются один датчик 2 угловой скорости, установленный на валу карданной передачи, один модулятор 3 давления и один блок



рис. 7.8. Схемы АБС с отдельным

(а) и общим (б) регулированием

колес:

1 — блок управления; 2 — датчик; 3 — модулятор давления


управления 1. Такая схема установки элементов АБС имеет более низкую чувствительность и обеспечивает меньшую эффективность торможения автомобиля.

Применение АБС обеспечивает наибольший эффект на скольз­кой дороге, когда тормозной путь автомобиля уменьшается на 10... 15 %. На сухой асфальтобетонной дороге такого сокращения тормозного пути автомобиля может и не быть.

Способ торможения.Из различных способов служебного режи­ма торможения автомобиля — торможение двигателем, с отсое­диненным двигателем (тормозной системой), совместно с двига­телем, тормозом-замедлителем и с периодическим прекращени­ем действия тормозной системы — наиболее эффективным явля­ется последний способ.

При торможении с периодическим прекращением действия тормозной системы обеспечиваются наиболее значительные тор­мозные силы на колесах автомобиля и сохраняется максимальное сцепление колес с дорогой. Однако из-за сложности такого спо­соба торможения его рекомендуется применять только водителям высокой квалификации.

Контрольные вопросы

1. Перечислите измерители тормозных свойств. Какой характер носят
их зависимости от скорости?

2. Каковы основные режимы и способы торможения автомобиля?

3. Что представляют собой тормозной и остановочный пути и в чем
состоит различие между ними?

4. Какое влияние оказывают различные факторы на тормозные свойства автомобиля?


УПРАВЛЯЕМОСТЬ

Управляемость автомобиля — одно из важнейших эксплуата­ционных свойств, определяющих возможность его безопасного дви­жения с большими средними скоростями, особенно на дорогах с интенсивным движением.

Поворот автомобиля

Основными параметрами, характеризующими поворот автомо­биля, являются радиус поворота и положение центра поворота.

На рис. 8.1 и 8.2 представлены схемы поворота автомобиля с жесткими и эластичными колесами. Точка О представляет собой центр поворота. Она находится на пересечении перпендикуляров, проведенных к векторам скоростей всех колес (мостов) автомо­биля. Радиус поворота R (Rэ)представляет собой расстояние от центра поворота до продольной оси автомобиля.

Для автомобиля с жесткими колесами (см. рис. 8.1), у которого векторы скоростей колес совпадают с плоскостью их вращения, центр поворота лежит на продолжении оси задних колес, а ради­ус поворота (из ΔОАБ)

,

где L — база автомобиля; θ — угол поворота управляемых колес.



Рис. 8.1. Схема поворота автомобиля с жесткими колесами:

О — центр поворота; А, Б — центры осей

передних и задних колес; v1, v2— векторы

скоростей передних и задних колес



Рис. 8.2. Схема поворота автомобиля с эластичными колесами:

О — центр поворота; А, В — центры осей передних и задних колес; С — расстояние между центром В оси задних колес и точ­кой Б — проекцией центра поворота на продольную ось автомобиля; v1, v2век­торы скоростей передних и задних колес


Следовательно, радиус поворота автомобиля R с жесткими колесами зависит только от угла поворота управляемых колес.

Для автомобиля с эластичными колесами (см. рис. 8.2), векто­ры скоростей которых не совпадают с плоскостью их вращения, центр поворота находится на некотором расстоянии С от оси зад­них колес, а радиус поворота (из ΔОАБ и ΔОБВ)

где δ1, δ2 — углы увода передних и задних колес (мостов).

Таким образом, радиус поворота автомобиля с эластичными колесами зависит от угла поворота управляемых колес и углов увода передних и задних колес, обусловленных их эластичностью при действии боковой силы.

С учетом радиуса поворота Rэнаходим расстояние С (из ΔОБВ):

Следовательно, положение центра поворота автомобиля с эла­стичными колесами зависит от угла поворота управляемых колес и углов увода передних и задних колес (мостов).

В технической характеристике автомобиля указывается наимень­ший радиус поворота по колее переднего наружного колеса. Этот радиус определяется экспериментально при максимальном пово­роте управляемых колес.

Радиус поворота автомобиля по колее переднего наружного колеса можно определить по следующей формуле:

где В — колея передних колес.


8.2. Силы, действующие на автомобиль при повороте

Процесс движения автомобиля на повороте включает в себя три фазы (рис. 8.3, а):вход в поворот (участок АБ),поворот (БВ)и выход из него (ВТ).

При входе в поворот управляемые колеса двигавшегося прямо­линейно автомобиля поворачиваются, и он движется по кривой уменьшающегося радиуса.

При повороте управляемые колеса повернуты на определенный угол, и движение происходит по кривой постоянного радиуса.

При выходе из поворота управляемые колеса возвращаются в нейтральное положение, и автомобиль движется по кривой уве­личивающегося радиуса, а затем — прямолинейно.

Во время движения на повороте на автомобиль (рис. 8.3,б) дей­ствуют следующие силы: центробежная Рци ее поперечная Руи продольная Рхсоставляющие, а также поперечные реакции доро­ги: Ry1— на передний и Ry2на задний мосты.

Основной действующей силой при повороте является попереч­ная составляющая Руцентробежной силы, которая направлена пер­пендикулярно продольной оси автомобиля и представляет собой сумму трех сил:

Py=P′y+ P′′y + P′′′y .

Сила P′y всегда возникает при криволинейном движении. Она пропорциональна квадрату скорости и действует в процессе всего поворота. Сила P′ y появляется в результате изменения угла пово­рота управляемых колес и действует при входе и выходе из пово­рота. Сила P′′′y возникает вследствие изменения скорости движе­ния и действует только при неравномерном движении на пово­роте. Из трех указанных состав­ляющих наибольшее значение имеет сила P′y,на долю которой приходится 90 % силы Ру. Поэто­му для автомобилей общего на­значения и специализированных автомобилей силами P′′y и P′′' пренебрегают.

Рис. 8.3. Поворот автомобиля:

а — фазы процесса поворота; б — силы, действующие при повороте; А — Г — характерные точки траектории поворо­та автомобиля; v1, v2векторы ско­ростей передних и задних колес


Их учитывают только для специальных автомобилей (пожар­ные, автомобили «скорой помощи» и др.), движущихся на пово­ротах с более высокими скоростями.

При равномерном движении на повороте поперечная состав­ляющая центробежной силы

Она пропорциональна квадрату скорости движения, поэтому быстро возрастает при увеличении скорости.

Поперечные реакции дороги на передний и задний мосты при равномерном движении на повороте

Из этих выражений следует, что центробежные силы, действу­ющие на передний и задний мосты, можно считать пропорцио­нальными приходящемуся на них весу G1и G2.



Дата добавления: 2021-12-14; просмотров: 392;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.