Биполярный транзистор


Транзистор представляет собой двухпереходный прибор. В зависимости от того, как чередуются области, транзисторы бывают двух типов: p-n-p и n-p-n. Переходы образуются на границах тех трех слоев, из которых состоит транзистор. В зависимости от типа проводимости крайних слоев различают транзисторы p-n-p и n-p-n со взаимно противоположными рабочими полярностями. Контакты с внешними электродами – омические (рис. 33).

Рис. 33. Структуры и условные обозначения p-n-p (a, б) и n-p-n (в, г) биполярных транзисторов

Переход, работающий в прямом направлении, называется эмиттерным, а соответствующий крайний слой – эмиттером. Средний слой называется базой. Второй переход, нормально смещенный в обратном направлении, называется коллекторным, а соответствующий крайний слой – коллектором.

Если три области полупроводника с разными типами основных носителей соединить, как это показано на (рис. 34), то возможно создание прибора способного усиливать сигналы, токи и напряжения, так называемого полупроводникового транзистора.

К выводам эмиттера и базы подводится небольшое напряжение порядка 0,3 В, так что переход эмиттер - база - слегка открыт. К выводам коллектора и эмиттера подводится напряжение порядка 3-30 В, так что переход коллектор - база закрыт (рис. 34).

Рис. 34. Схема включения полупроводникового транзистора n-p-n типа

Однако электроны, пришедшие из области эмиттера в область базы, только частично (приблизительно один из 20-100 электронов) рекомбинируют с дырками в области базы. Остальные электроны "проскакивают" в область коллектора, не успев рекомбинировать.

Малое изменение напряжения эмиттер - база приведет к увеличению тока через переход эмиттер - база и вызовет еще большее увеличение тока в область коллектора. Тогда на сопротивлении нагрузки появится сильное изменение напряжения. Таким образом, малое изменение напряжения и тока между эмиттером и базой транзистора приводит к большим изменениям напряжения между эмиттером и коллектром транзистора.

Как элемент электрической цепи, транзистор обычно используют таким образом, что один из его электродов является входным, а другой — выходным. Третий электрод является общим относительно входа и выхода. В цепь входного электрода включают источник входного пере­менного сигнала, а в цепь выходного — сопротивление нагрузки. В зависимости от того, какой электрод являет­ся общим, различают три схемы включения транзисторов: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК) (рис. 35).

Рис. 35. Схемы включения биполярного транзистора: а - с общей базой, б - общим эмиттером, в - общим коллектором

Основные процессы, протекающие в биполярном транзисторе, рассмотрим на примере транзистора, типа р-п-р, включенного по схеме с общей базой (рис. 36).

Рис. 36. Транзистор типа р-п-р, включенный по схеме с ОБ

При отсутствии внешних напряжений (Uэб = Uкб = 0) поля р-n-переходов создаются лишь объемными зарядами ионов и установившиеся потен­циальные барьеры обоих пере­ходов поддерживают динами­ческое равновесие, а токи через переходы равны нулю. При на­личии источников смещения Eэ, и Екуказанной полярности (нормальное включение) соз­даются условия для инжекти­рования дырок из эмиттера в базу и перемещения электронов из базы в эмиттер. Поскольку концентрация электронов в базе во много раз меньше концентрации дырок в слое эмиттера, то встречный поток электронов значительно меньше. Поэтому при встречном перемещении дырок и электронов произойдет их частичная рекомбинация, а избыток дырок внедряется в слой базы, образуя ток эмиттера Iэ.

В результате инжекции дырок в базу, где они являют­ся неосновными носителями, в последней возникает градиент (перепад) концентрации дырок, что приводит к их диффузионному перемещению во всех направле­ниях, в том числе и к коллекторному р-n-переходу. Дрейф (перемещение носителей под воздействием электри­ческого поля) неосновных носителей к коллектору играет второстепенную роль. При перемещении через базу концентрация неосновных носителей заряда уменьшается за счет рекомбинации с электронами, поступающими в ба­зовую цепь от источника Eэ. Поток этих электронов образу­ет базовый ток Iб. Так как толщина базы wб современных транзисторов составляет единицы микрон, то большая часть дырок достигает коллекторного р-n-перехода и захватывается его полем, рекомбинируя с электронами, поступающими от источника питания Ек. При этом в кол­лекторной цепи проходит ток Iк, замыкая общую цепь тока. Таким образом, для токов транзистора справедли­во соотношение Iэ = Iб + Iк.

 

При любом варианте включения транзистора имеется две входные величины (ток и напряжение) и две выходные. Взаимозависимость этих четырех величин можно выразить двадцатью четырьмя семействами характеристик, но широкое распространение получила система:

Первое уравнение – это семейство входных характеристик, второе – выходных. На рис. 37 представлены идеальные семейства входных и выходных характеристик транзистора. На входных характеристиках (рис. 37, а) кривая при Uкб = 0 является обычной прямой ветвью диодной ВАХ. При значениях Uбк > 0 кривые сдвигаются влево и вверх в связи с нарастанием собираемого компонента эмиттерного тока.

Рис. 37. Идеальные статические характеристики транзистора:
а
входные; б выходные

Выходные характеристики – это обратные ветви ВАХ диода, ток насыщения которого зависит от тока базы. Входной ток Iб в принципе может иметь не только положительную, но и небольшую отрицательную величину. Зависимость выходного тока коллектора от Iб обычно описывается следующим образом:

Коэффициент при токе Iб называется коэффициентом передачи базового тока. Довольно часто его называют также просто коэффициентом усиления транзистора. Обычно β>>1. Ток – нулевой ток коллектора в схеме, т. е. ток при оборванной базе. Следует отметить, что режим работы транзистора с оборванной базой очень опасен из-за возможности пробоя, поэтому непосредственно ток не измеряют. Минимально возможный ток коллектора будет получаться при отрицательном токе базы.

На (рис. 38) и (рис. 39) представлены реальные входные и выходные характеристики включения транзистора по схеме с ОБ.

Рис. 38. Реальные входные характеристики для схемы с ОБ имеют экспоненциальный вид, так как на эмиттерный переход подано прямое напряжение. Его значение не превышает 0,3...0,5В для Ge, и 0,6...0,8В для Si

Рис. 38. Реальные выходные характеристики включения транзистора по схеме с ОБ при Iк=f(Uкэ) и Iб=const



Дата добавления: 2021-11-16; просмотров: 347;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.