Тяговые характеристики тепловозов с электрической передачей мощности.
На сегодняшний день большинство тепловозов используемых на железных дорогах России и мира в качестве передачи мощности используют электрическую передачу. В зависимости от типа используемых электрических машин электрические передачи разделяют на передачи постоянного тока, переменно-постоянного тока и переменного тока. В передачах постоянного тока используются тяговый генератор и тяговые двигатели постоянного тока, в передачах переменно-постоянного тока используется синхронный тяговый генератор и двигатели постоянного тока, в передачах переменного тока используются генератор и двигатели переменного тока. В электрической передаче якорь тягового генератора через муфту жестко соединен с коленчатым валом дизеля, а якоря тяговых двигателей через осевые редуктора связаны с ведущими колесными парами тепловоза.
Принципиальная схема электрической передачи постоянного тока приведена на рисунке 18. Передача содержит тяговый генератор и несколько тяговых двигателей. Такие передачи нашли широкое распространение на тепловозах мощностью до 2200кВт.
Рисунок 18. Схема электрической передачи постоянного тока:
САР – система автоматического регулирования возбуждения тягового генератора; ОВГ – обмотка возбуждения тягового генератора; ТГ – тяговый генератор; ТЭД – тяговый электродвигатель; ОВ – обмотка возбуждения тягового электродвигателя; RШ1, RШ2 – сопротивления ослабления магнитного потока тягового двигателя.
Благодаря наличию двух последовательно соединенных коллекторов генератора и тягового двигателя вся тяговая цепь данной передачи может быть разделена на две практически независимые системы: дизель – тяговый генератор и тяговый двигатель – колесная пара.
Как и в случае с э.п.с. регулирование скорости движение тепловоза с электрической передачей осуществляется путем изменения напряжения тягового генератора (ступенчатое при изменении схемы соединения или плавно при регулировании возбуждении тягового генератора) или регулированием тяговых двигателей включением ступеней ослабления магнитного потока.
При регулировании тягового генератора стремятся обеспечить постоянство мощности, частоты вращения и подачи топлива дизеля при различных значениях тока нагрузки. Для этого используется специальная система регулирования напряжения тягового генератора.
При регулировании и выборе типа применяемых тяговых двигателей главной задачей является обеспечение наименьшего изменения тока нагрузки при изменении момента сопротивления движению. Наиболее подходящими для данного условия являются двигатели с сериесной (последовательной) системой возбуждения. В качестве регулирования используется включение ступеней ослабления поля.
При установившемся режиме работы дизеля и постоянном выходе рейки топливного насоса система регулирования возбуждения тягового генератора изменяет напряжение на его зажимах таким образом, чтобы обеспечить выполнение следующего условия:
; (13) где PГ – выходная мощность тягового генератора кВт, IГ – ток нагрузки тягового генератора (А); UГ – напряжение на зажимах тягового генератора (В); – коэффициент полезного действия тягового генератора.
Зависимость при реализации номинальной мощности дизеля называют внешней характеристикой тягового генератора. Та же зависимость при мощности дизеля меньше номинальной называется частичной характеристикой тягового генератора. Внешняя и частичные характеристики тягового генератора показаны на рисунке 19. При определении мощности генератора на частичных нагрузках при различных частотах вращения, прежде всего, стремятся обеспечить экономичность работы тепловозного дизеля.
Важным вопросом является выбор основных параметров внешней характеристики тягового генератора, а именно максимального и номинального тока, а также максимального напряжения. Максимальный ток тягового генератора выбирается таким образом, чтобы обеспечить реализацию тяговым двигателям реализацию максимальной силы тяги по условиям сцепления колесных пар с рельсами. Номинальный ток тягового генератора выбирается таким образом, чтобы обеспечить реализацию длительной (расчетной) силы тяги по условию нагревания электрических машин. Значение максимального напряжения генератора определяется исходя из обеспечения максимальной скорости движения тепловоза при включенном ослаблении поля.
Рисунок 19. Внешняя и частичные характеристики тягового генератора:
Uг max – максимальное напряжение тягового генератора (В); Uг ном – номинальное напряжение тягового генератора (В); Uг min – минимальное напряжение тягового генератора; Iг max – максимальный ток тягового генератора (А); Iг ном – номинальный (расчетный) ток тягового генератора (А); Iг min – минимальный ток тягового генератора (А); ПКМ1, ПКМ5, ПКМ10, ПКМ14 и ПКМ15 – соответственно первая, пятая, десятая, четырнадцатая и пятнадцатая позиции контроллера машиниста.
Преимуществами электрической передачи мощности постоянного тока являются:
• отсутствие кинематической связи вала теплового двигателя с движущими колесами локомотива;
• возможность плавного регулирования силы тяги и скорости локомотива во всем заданном рабочем диапазоне;
• высокое значение к. п. д. передачи и теплового двигателя во всем рабочем диапазоне (при мощности менее 1000кВт к.п.д. составляет 0,78—0,84, а при более 1000 кВт – 0,84—0,86);
• высокая степень использования мощности теплового двигателя во всем рабочем диапазоне;
• отсутствие муфт сцепления и промежуточных зубчатых редукторов; возможность осуществления электродинамического или реостатного торможения; высокая долговечность и надежность;
• достаточная свобода в размещении силового и вспомогательного оборудования при конструировании локомотива.
К числу недостатков электрической передачи постоянного тока можно отнести:
• более высокую стоимость передачи по сравнению с механической и гидравлической, что особенно заметно при малых мощностях;
• значительный расход цветных металлов, высококачественной стали и изоляционных материалов на изготовление;
• многократные настроечные (реостатные) испытания в процессе эксплуатации;
• снижение надежности и к.п.д. передачи в целом от ухудшения климатических условий эксплуатации;
• достаточно большой вес электрических машин и передачи в целом;
• необходимость тщательного ухода за коллекторно-щеточным узлом электрических машин.
Электрическая передача постоянного тока для тягового подвижного ж.д. состава охватывает диапазон мощностей от 220 до 4400 кВт. Отдельные локомотивы строятся или проектируются на большие мощности. При мощностях более 1470 кВт в агрегате применяется исключительно электрическая передача.
Электрические передачи мощности переменно-постоянного тока. Тенденция к увеличению мощности на единицу веса и габаритов тепловоза привела к тому, что возникла проблема с размещением оборудования в дизельном помещении и моторных тележках, а затем и снижение надежной работы коллекторно-щеточного узла машин постоянного тока и в первую очередь тягового генератора. Увеличение нагрузок привели к неудовлетворительной работе его щеток и коллектора.
Расчеты и опытные данные показали, что при произведении Рг ном×nд ном > (25¸30)×103 не удается обеспечить надежную работу коллекторно-щеточного узла машины постоянного тока. Поэтому переход на передачу постоянно-переменного тока для тепловозов был обусловлен.
С шестидесятых годов начался выпуск тепловозов с синхронным генератором и полупроводниковой выпрямительной установкой. Система регулирования генератора и характеристики на выходе выпрямителя соответствовали передачам постоянно-постоянного тока. На данный момент времени данный тип передачи применен на тепловозах 2ТЭ116, 2ТЭ121, ТЭП70, ТЭМ7 и др.
На тепловозах с передачей мощности переменно-постоянного тока применяются тяговые электродвигатели постоянного тока с последовательным возбуждением и ступенчатым ослаблением магнитного потока возбуждения.
В тепловозной передаче мощности переменно-постоянного тока (рисунок 20) применен синхронный трехфазный генератор СГ с возбудителем В и полупроводниковый кремниевый выпрямитель ВУ с интенсивным охлаждением. Синхронные генераторы имеют вес на единицу мощности почти в два раза меньше, чем генераторы постоянного тока при той же мощности и частоте вращения вала дизеля. Имеются реальные возможности для снижения веса и размеров выпрямительных установок.
Рисунок 20. Схема электрической передачи переменно-постоянного тока:
САР – система автоматического регулирования возбуждения тягового генератора; ОВГ – обмотка возбуждения тягового генератора (расположена на роторе); СТГ – синхронный тяговый генератор; ВУ – выпрямительная установка; ТЭД – тяговый электродвигатель; ОВ – обмотка возбуждения тягового электродвигателя; RШ1, RШ2 – сопротивления ослабления магнитного потока тягового двигателя.
Основное преимущество синхронного генератора перед генератором постоянного тока заключается в отсутствии коллектора, что повышает надежность его работы и позволяет существенно повысить окружную скорость на поверхности ротора. Если для генератора постоянного тока окружная скорость якоря не превышает 70 м/с, то для синхронного генератора она допускается 180 м/с и в некоторых случаях до 200 м/с.
Расчет и построение тяговых характеристик тепловозов с электрической передачей аналогичен подобному расчету для э.п.с. с той лишь разницей, что напряжение тяговых двигателей изменяется согласно гиперболической характеристике тягового генератора.
На рисунке 21 приведены характеристики тепловоза 3ТЭ10М с электрической передачей постоянного тока, а на рисунке 22 тепловоза 2ТЭ116 с передачей переменно-постоянного тока.
Рисунок 21. Тяговая характеристика тепловоза 3ТЭ10М.
Рисунок 22. Тяговая характеристика тепловоза 2ТЭ116.
Дальнейшее развитие электрической передачи мощности локомотива – это применение передачи мощности переменно-переменного тока – переход на тяговые асинхронные электродвигатели, как тепловозов, так и электровозов.
Основными видами бесколлекторных электродвигателей являются асинхронный, синхронный и вентильный двигатели. Короткозамкнутый асинхронный тяговый электродвигатель прост по конструкции и имеет наименьшие габариты и массу. При одинаковом вращающем моменте и мощности масса асинхронного электродвигателя на 25—30% меньше, чем электродвигателя постоянного тока.
Электрическая передача переменного тока маневрового тепловоза ТЭМ21, построенного на Брянском машиностроительном заводе, состоит из синхронного генератора переменного тока ГСТ1050-1000, двух статических преобразователей частоты (выпрямитель и инвертор) и четырех асинхронных тяговых двигателей ДАТ-350. Схема передачи приведена на рисунке 23. Синхронный генератор имеет три трехфазные обмотки (две тяговые и третья для питания электроприводов вспомогательных машин) с помощью полужесткой муфты соединен с коленчатым валом дизеля мощностью 1100кВт. Каждый из статических преобразователей частоты состоит из управляемого выпрямителя и автономного инвертора тока и предназначен для регулирования частоты и амплитуды питающего напряжения асинхронных тяговых двигателей. Асинхронные тяговые двигатели попарно подключены к статическим преобразователям. Реверсирование двигателей осуществляется путем изменения последовательности чередования фаз питающего тока.
Рисунок 23. Принципиальная схема электрической передачи переменного тока тепловоза ТЭМ21: СГ – синхронный тяговый генератор; УВУ – управляемая выпрямительная установка; АИТ – автономный инвертор тока; БЗТ – блок запирающих (тормозных) тиристоров; В-ТПЕ – управляемый вентиль цепи возбуждения СГ; RТ – сопротивление тормозных резисторов; АТД – асинхронный тяговый электродвигатель.
Дата добавления: 2017-11-21; просмотров: 2893;