Система спонтанного гемостаза
В организме существует система спонтанного гемостаза, которая в целом ряде случаев позволяет ему самостоятельно, без всякой помощи, справиться с кровотечением. Часто наблюдают небольшие кровотечения, на которые порой просто не обращают внимания. Любая незначительная травма (ушиб, ссадина, царапина, забор крови для анализа, инъекция и др.) вызывает повреждение мелких сосудов, и если бы не система спонтанного гемостаза, такое повреждение могло бы привести к смерти пострадавшего.
Гемостаз осуществляют благодаря трём основным механизмам.
1. Реакция сосудов.
2. Активация тромбоцитов (клеточный механизм).
3. Свёртывающая система крови (плазменный механизм).
Реакция сосудов. При повреждении сосуда возникает вазоконстрикция - повышение тонуса повреждённого сосуда. Связано это с сокращением гладкомышечных клеток сосудистой стенки. Кроме того, при повреждении эндотелия, его воспалительных или аллергических изменениях в стенке сосуда возникают отёчные зоны, нарушается проницаемость стенки сосуда. Это снижает гидрофобные свойства внутреннего слоя сосудистой стенки, в норме препятствующего внутрисосудистому свёртыванию и способствующему быстрому растворению сгустка.
Важный момент в обеспечении гемостаза - состояние гемодинамики. Изменение системной гемодинамики вследствие массивной кровопотери происходит в результате вазоконстрикции, нарушения реологических свойств крови, снижения АД. Всё это приводит к снижению скорости кровотока и улучшает условия для тромбоза сосуда. Кроме того, именно повреждение сосудистой стенки запускает два следующих механизма - клеточный и плазменный.
Активация тромбоцитов (клеточный механизм гемостаза). Клеточный механизм спонтанного гемостаза - преимущественно биофизический процесс, основу которого составляют электрокинетические явления в сосудистой стенке и действие высвобождающихся биологически активных веществ.
В клеточном механизме гемостаза выделяют три фазы:
• адгезия тромбоцитов;
• агрегация тромбоцитов;
• образование тромбоцитарного сгустка.
Адгезия тромбоцитов. Адгезия тромбоцитов - прилипание, прикрепление тромбоцитов к сосудистой стенке в зоне повреждения интимы, связанное с изменением электрического потенциала в области поражения и обнажением коллагена. Кроме коллагена, в процессе адгезии тромбоцитов участвуют гликопротеид Ib, фактор фон Виллебранда, ионы кальция и другие факторы (тромбоспондин, фибронектин).
Адгезия тромбоцитов к обнажённому коллагену сосудистой стенки происходит за несколько секунд и сопровождается высвобождением биологически активных веществ, которые способствуют развитию следующей фазы - агрегации тромбоцитов.
Агрегация тромбоцитов. Агрегация тромбоцитов протекает несколько минут. В этой фазе выделяют начальную, вторичную стадии агрегацию и стадию образования эйказоноидов.
Начальная агрегация.Агрегацию запускают биологически активные вещества: аденозиндифосфат, эпинифрин, тромбин. Механизм агрегации: Са2+-зависимый трансмембранный гликопротеид IIb-IIIа - рецептор фибриногена (плазменный фактор I) - связывается с фибриногеном.
Вторичная агрегация.По мере прикрепления тромбоцитов к подэндотелиальной соединительной ткани происходит их активация, они приобретают шаровидную форму, образуют метаболиты арахидоновой кислоты и секретируют серотонин, ограничивающий приток крови к повреждённой области.
Образование эйкозаноидов.Арахидоновая кислота, высвобождающаяся из тромбоцитарных фосфолипидов, превращается с помощью циклооксигеназы в нестабильные циклические эндоперекиси (простагландины G2 и Н2). Тромбоксансинтетаза превращает простагландин Н2 в тромбоксан А2, стимулирующий дальнейшее высвобождение аденозиндифосфата, что усиливает агрегацию тромбоцитов.
Образование тромбоцитарного сгустка. При взаимодействии агрегированных тромбоцитов с тромбином и фибрином происходит образование тромбоцитарного сгустка, который создаёт поверхность для сборки комплекса белков коагуляции.
Свёртывающая система крови (плазменный механизм). В основе функционирования свёртывающей системы крови лежит классическая ферментативная теория А.А. Шмидта (1861).
Факторы свёртывающей системы. Согласно современной схеме, свёртывание крови обеспечивают тринадцать факторов свёртывающей системы (табл. 5-6). За исключением ионов Са2+, VIII фактора, тромбопластина и тромбоцитарных факторов, все они синтезируются в печени.
Механизм свёртывания крови. Процесс свёртывания состоит из трёх фаз.
Первая фаза- образование кровяного и тканевого тромбопластина (длится 3-5 мин, в то время как две последующие - 2-5 с).
Вторая фаза- переход протромбина в тромбин.
Третья фаза- образование фибрина.
Процесс свёртывания крови возникает в результате контакта с чужеродной поверхностью - повреждённой стенкой сосуда. В первой фазе - фазе образования тромбопластина происходят две параллельные реакции: образование кровяного тромбопластина (внутренняя система гемостаза) и тканевого тромбопластина (внешняя система гемостаза) (рис. 5-5).
Переход протромбина в тромбин (вторая фаза свёртывания) происходит под влиянием кровяного и тканевого тромбопластина.
Третья фаза - образование фибрина происходит в три этапа: сначала в результате ферментативного процесса из фибриногена образуется профибрин, затем после отщепления фибринопластинов А и В - фибрин-мономер, молекулы которого в присутствии ионов Са2+подвергаются полимеризации. Эта фаза завершается при участии XIII фактора плазмы и тромбина. Весь процесс заканчивается ретракцией образовавшегося сгустка. Однако наличие только такой системы сделало бы опасным возникновение внутрисосудистого свёртывания крови. Для предотвращения этого существует ряд механизмов:
Таблица 5-6. Факторы свёртывающей системы
• в обычном состоянии все факторы свёртывающей системы находятся в неактивном состоянии, для запуска процесса необходима активация фактора Хагемана (XII);
• кроме прокоагулянтов, существуют и ингибиторы процесса гемостаза; универсальный ингибитор, влияющий на все фазы свёртывания, - гепарин натрий, синтезируемый тучными клетками, в основном в печени;
• фибринолитическая система - часть противосвёртывающей системы, обеспечивает лизис образовавшегося сгустка фибрина.
Равновесие перечисленных систем приводит к тому, что в норме кровь спокойно течёт по сосудам и внутрисосудистых тромбов практически не возникает, хотя постоянно идёт образование пристеночного фибрина.
Рис. 5-5. Механизм свёртывания крови
При кровотечении же в месте травмы сосудистой стенки быстро возникает тромбоцитарный сгусток, на который «садится» фибрин, что приводит к достаточно надёжному гемостазу. Таким образом, довольно быстро останавливается кровотечение из мелких сосудов. Если же организм самостоятельно не справляется с кровотечением, прибегают к искусственным методам его остановки.
Дата добавления: 2021-10-28; просмотров: 328;