Электрический дрейф


Оба вида дрейфа в неодно­родном магнитном поле зависят от знака частиц. От них отличается в этом отношении электрический дрейф, т. е. дрейф ча­стиц в магнитном поле при на­личии электрического. Скорость электрического дрейфа

(6.47)

Действительно, электрический заряд в формулу не входит, а с ним исключается зависимость скорости от знака частиц. Электрический дрейф для ионов и для электронов происходит в одну сторону и с одинаковой скоростью, несмотря на большое различие в их массах.

Следует иметь в виду, что формула (6.47) примени­ма только при Е0<<Н0, иначе скорость дрейфа получается соизмеримой со скоростью света. Весь же наш вы­вод для дрейфовых скоростей сделан исходя из по­стоянства массы частиц, т. е. для нерелятивистских ско­ростей.

Формулу (6.47) мы получили, подставив в общее вы­ражение (6.43) для скорости дрейфов в магнитном поле значение электрической силы

(6.48)

Однако ее можно вывести несколько иначе — из об­щего уравнения (6.1). Это целесообразно, если учитывать некоторые полученные полезные физические вы­воды.

Преобразуем уравнение (6.1) в систему отсчета, ко­торая движется относительно исходной (лабораторной) системы координат с постоянной скоростью u'Д. Ско­рость частицы в движущейся системе u', имлульср'. Скорость в лабораторной системе координат

(6.49)

Импульс

(6.50)

Найдем изменение импульса р:


(6.51)

 

где Е0||и Е0,—слагающие электрического поля вдоль и перпендикулярно магнитному полю.

Величинуu'Д можно выбрать таким образом, чтобы выполнялись два условия:

(6.52)

и


(6.53)

Условия (6.52) и (6.53) определяют u'Дсовершенно однозначно. Из условия (6.52) сразу же следует, чтоu'ДН0. Умножим второе условие (6.53) векторно наНо:


(6.54)

Член H0/c·(u'ДН0)=0 согласно условию (6.52). Следовательно,

(6.55)

т.е. представляет собой дрейфовую скорость. Уравнение движения (6.51) при учете (6.53) запишем


(6.56)

Из него полностью выпала компонента E0пер. Отсюда можно сделать вывод, что влияние E0пер сводится к созданию дрейфа в направлении, перпендикулярном к магнитному полю. Таким образом, получаем равномерно ускоренное движение вдоль поля и дрейфовое поперек него. Оба движения складываются в движение по па­раболе (рис. 8 ). Если Е0 лежит в плоскости уz, то и ведущий центр не выйдет из этой плоскости. Поскольку выбор осей х и у произволен, случай, показанный на рис. 8, можно считать довольно общим.



Дата добавления: 2021-10-28; просмотров: 345;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.