Явления в асинхронной машине при неподвижном роторе


Физическая сущность явлений в асинхронной машине и трансформаторе имеет много общего, поэтому целесообразно начать изучение асинхронных машин с трансформаторного режима при неподвижном роторе ( ).

Рассмотрим явления в трехфазной асинхронной машине, полагая, что все величины являются синусоидальными функциями времени, а магнитное поле в воздушном зазоре распределено по гармоническому закону. Высшими пространственными гармониками поля пренебрегаем. Обмотку ротора будем считать фазной. Пусть вначале обмотка ротора разомкнута, а обмотка статора включена в сеть на напряжение (рис. 4.3, а).

Симметричная система токов , протекающих по фазам обмотки статора под действием приложенного напряжения , создает основную гармонику МДС с амплитудой

.

Под действием этой МДС в машине образуется магнитный поток, который обычно разделяют на основной поток Ф, сцепленный с обмотками статора и ротора, и поток рассеяния , сцепленный только с обмоткой статора,

.

Основной магнитный поток наводит в обмотках статора и ротора ЭДС

;

.

Для удобства дальнейшего анализа обмотку ротора приведем к обмотке статора. Приведенные величины, как и в трансформаторе, будем обозначать символами со штрихами. Коэффициент приведения по напряжению определяется как отношение ЭДС и :

.

Появление в формуле для отношения обмоточных коэффициентов обусловлено характером образования магнитного поля в асинхронной машине. В отличие от трансформатора первая гармоника магнитного поля асинхронной машины зависит от конструкции обмотки.

ЭДС и можно также выразить через ток , используя комплексную форму записи величин

,

где - сопротивление намагничивающего контура; , - активная и реактивная составляющие сопротивления намагничивающего контура.

В обмотке статора кроме ЭДС существует еще ЭДС от потока рассеяния . Действующее значение этой ЭДС представляется комплексом

,

где - индуктивное сопротивление рассеяния обмотки статора.

Напряжения, ЭДС и токи фаз обмоток статора и ротора должны удовлетворять уравнениям, которые в комплексной форме записываются аналогично уравнениям трансформатора

(4.1)

Выражая ЭДС , и через ток , получим

(4.2)

где .

Этим уравнениям соответствует схема замещения асинхронной машины с неподвижной и разомкнутой обмоткой ротора (рис. 4.4). Данная схема аналогична схеме замещения трансформатора на холостом ходу. Отличие состоит лишь в соотношении параметров. Наличие воздушного зазора в машине приводит к существенному снижению реактивной составляющей сопротивления намагничивающего контура и, следовательно, к увеличению тока намагничивания. В асинхронных машинах ток намагничивания составляет 20-50% от номинального тока, а в трансформаторе он на порядок меньше. По уравнениям (4.1) можно построить также векторную диаграмму, задав напряжение вектора ЭДС (рис. 4.5). Если совместить эту диаграмму с пространственной диаграммой, то можно получить мгновенные значения фазных напряжений ЭДС и токов, проецируя вращающиеся с угловой скоростью векторы , и на неподвижные оси АВС.

Рассмотрим теперь процессы в асинхронной машине с неподвижным ротором и короткозамкнутой обмоткой ротора (рис. 4.6, а).

При включении обмотки статора на напряжение фазные токи создают основную гармонику МДС с амплитудой

.

Токи ротора , направленные, в соответствии с правилом Ленца, навстречу токам , создадут основную гармонику МДС с амплитудой

.

Число фаз обмотки ротора в общем случае не равно числу фаз обмотки статора . МДС и образуют результирующую МДС , которая создает основной магнитный поток , сцепленный с обеими обмотками.

Связь между этими МДС в комплексной форме определяется уравнением

.

Выражая МДС через соответствующие токи, получим

,

где - ток намагничивания, протекающий по обмотке статора.

Отсюда находим выражение для тока намагничивания :

или

, (4.3)

где - коэффициент приведения обмотки ротора к обмотке статора по току.

Полученное уравнение называется уравнением токов.

Ток намагничивания по определению создает в машине основной магнитный поток Ф, который, сцепляясь с обмотками статора и ротора, наводит в них ЭДС

Кроме основного потока в машине существуют также потоки рассеяния и (рис. 4.6, б). Каждый из этих потоков сцепляется только со своей обмоткой и наводит в ней ЭДС рассеяния и соответственно.

Действующие значения этих ЭДС можно выразить через соответствующие токи в комплексной форме:

С целью упрощения дальнейшего анализа выполним приведение обмотки ротора к обмотке статора, используя соотношения

и .

После приведения получаем

; ,

где - приведенное значение индуктивного сопротивления рассеяния обмотки ротора; - коэффициент приведения обмотки ротора к обмотке статора по сопротивлению.

В соответствии со вторым законом Кирхгофа напряжения, ЭДС и токи обмотки статора и ротора должны удовлетворять уравнениям

(4.4)

где - приведенное значение активного сопротивления обмотки ротора.

Уравнения напряжений (4.4) совместно с уравнением тока (4.3) образуют полную систему уравнений асинхронной машины для анализа установившихся режимов.

Уравнения показывают, что асинхронную машину можно заменить Т-образной схемой замещения (рис. 4.7), аналогичной схеме замещения трансформатора в режиме короткого замыкания.

Таким образом, при неподвижном роторе асинхронная машина работает как трансформатор, в котором электрическая энергия статора за вычетом потерь переходит в ротор, где, не совершая никакой полезной работы, превращается в тепло.

4.2. Явления в асинхронной машине при вращающемся роторе.
Замена вращающегося ротора неподвижным

При вращении ротора основной магнитный поток вращается относительно ротора с частотой

,

пропорциональной скольжению, поэтому частота наведенной в обмотке ротора ЭДС также будет пропорциональна скольжению:

.

Действующее значение этой ЭДС определяется выражением

,

где - ЭДС, наведенная в обмотке неподвижного ротора.

Индуктивное сопротивление рассеяния обмотки вращающегося ротора также будет пропорционально скольжению:

,

где - индуктивное сопротивление рассеяния неподвижного ротора.

Зависимость активного сопротивления обмотки ротора от частоты носит более сложный характер (см. п. 4.10). При данном рассмотрении эта зависимость не имеет принципиального значения, поэтому примем .

С учетом сделанных замечаний уравнение напряжений вращающегося ротора будет иметь вид

.

Отсюда ток ротора

. (4.5)

Частота этого тока так же, как и частота ЭДС , пропорциональна скольжению. Это обстоятельство существенно затрудняет анализ процессов в асинхронной машине, так как оказывается невозможным совместить электрические цепи статора и ротора. Однако эта проблема может быть снята, если заменить вращающийся ротор неподвижным. Возможность такой замены обусловлена тем, что поле ротора вращается синхронно с полем статора, образуя с ним общее поле машины. Действительно, МДС вращается относительно ротора с частотой скольжения , а сам ротор вращается с частотой , поэтому частота вращения МДС по отношению к статору равна синхронной

.

Таким образом, вращение ротора приводит к изменению частоты ЭДС и тока в обмотке ротора, но не влияет на характер взаимодействия полей статора и ротора. Результат этого взаимодействия останется неизменным, если ротор затормозить, а действующее значение тока ротора оставить прежним, изменив его частоту с на . Для выполнения такой замены достаточно в выражении (4.5) поделить числитель и знаменатель на s:

. (4.6)

Согласно этому выражению ток можно рассматривать как ток неподвижного ротора, активное сопротивление которого изменяется обратно пропорционально скольжению s реально вращающегося ротора.

4.3. Уравнения, схема замещения и векторная диаграмма
асинхронной машины

После замены вращающегося ротора неподвижным анализ установившихся процессов в асинхронной машине можно выполнить с помощью полученных ранее уравнений (4.4) и (4.3), если вместо сопротивления ввести в роторную цепь сопротивление :

Сопротивление можно представить следующим образом:

.

Тогда уравнения установившегося режима асинхронной машины примут вид

(4.7)

 

Уравнениям (4.7) соответствует Т-образная схема замещения асинхронной машины (рис. 4.8). В этой схеме сопротивление эквивалентно активной нагрузке трансформатора, а в асинхронной машине оно соответствует механической мощности, развиваемой ротором,

,

где М - электромагнитный момент; - электромагнитная мощность.

В асинхронной машине с неподвижным ротором электромеханического преобразования энергии не происходит, поэтому вся электромагнитная мощность превращается в электрическую мощность, выделяющуюся в виде тепла в сопротивлении ,

.

В реальной вращающейся асинхронной машине в теплоту превращается только часть электромагнитной мощности, определяемая мощностью потерь,

,

а остальная мощность определяет механическую мощность, развиваемую ротором,

.

Параметры схемы замещения обычно записывают в относительных единицах. Для наиболее распространенных асинхронных двигателей мощностью от 3 до 100 кВт они имеют следующие значения:

;

;

;

.

На основе системы уравнений (4.7) можно построить векторную диаграмму, наглядно иллюстрирующую взаимосвязи в асинхронной машине в рабочих режимах. На рис. 4.9 представлена векторная диаграмма асинхронной машины в режиме двигателя. Она аналогична векторной диаграмме трансформатора, работающего на чисто активную нагрузку. Отличие состоит в относительно большей величине намагничивающего тока (см. п. 4.2) и в ином физическом толковании вектора Ф. В асинхронной машине - это пространственная функция, распределенная по гармоническому закону и вращающаяся с синхронной частотой, а в трансформаторе поток Ф - это гармоническая функция времени, представленная на комплексной плоскости изображающим вектором .



Дата добавления: 2017-11-21; просмотров: 3339;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.022 сек.