Свойство локальности данных
Оказывается, при таком способе организации по мере снижения скорости доступа к уровню памяти снижается также и частота обращений к нему. Ключевую роль здесь играет свойство реальных программ, в течение ограниченного отрезка времени способных работать с небольшим набором адресов памяти. Это эмпирически наблюдаемое свойство известно как принцип локальности или локализации обращений. Свойство локальности (соседние в пространстве и времени объекты характеризуются похожими свойствами) присуще не только функционированию ОС, но и природе вообще. В случае ОС свойство локальности объяснимо, если учесть, как пишутся программы и как хранятся данные, то есть обычно в течение какого-то отрезка времени ограниченный фрагмент кода работает с ограниченным набором данных. Эту часть кода и данных удается разместить в памяти с быстрым доступом. В результате реальное время доступа к памяти определяется временем доступа к верхним уровням, что и обусловливает эффективность использования иерархической схемы. Надо сказать, что описываемая организация вычислительной системы во многом имитирует деятельность человеческого мозга при переработке информации. Действительно, решая конкретную проблему, человек работает с небольшим объемом информации, храня не относящиеся к делу сведения в своей памяти или во внешней памяти (например, в книгах).
Кэш процессора обычно является частью аппаратуры, поэтому менеджер памяти ОС занимается распределением информации главным образом в основной и внешней памяти компьютера. В некоторых схемах потоки между оперативной и внешней памятью регулируются программистом (см. например, далее оверлейные структуры), однако это связано с затратами времени программиста, так что подобную деятельность стараются возложить на ОС. Адреса в основной памяти, характеризующие реальное расположение данных в физической памяти, называются физическими адресами. Набор физических адресов, с которым работает программа, называют физическим адресным пространством.
Логическая память
Аппаратная организация памяти в виде линейного набора ячеек не соответствует представлениям программиста о том, как организовано хранение программ и данных. Большинство программ представляет собой набор модулей, созданных независимо друг от друга. Иногда все модули, входящие в состав процесса, располагаются в памяти один за другим, образуя линейное пространство адресов. Однако чаще модули помещаются в разные области памяти и используются по-разному.
Схема управления памятью, поддерживающая этот взгляд пользователя на то, как хранятся программы и данные, называется сегментацией. Сегмент – область памяти определенного назначения, внутри которой поддерживается линейная адресация. Сегменты содержат процедуры, массивы, стек или скалярные величины, но обычно не содержат информацию смешанного типа.
По-видимому, вначале сегменты памяти появились в связи с необходимостью обобществления процессами фрагментов программного кода (текстовый редактор, тригонометрические библиотеки и т. д.), без чего каждый процесс должен был хранить в своем адресном пространстве дублирующую информацию. Эти отдельные участки памяти, хранящие информацию, которую система отображает в память нескольких процессов, получили название сегментов. Память, таким образом, перестала быть линейной и превратилась в двумерную. Адрес состоит из двух компонентов: номер сегмента, смещение внутри сегмента. Далее оказалось удобным размещать в разных сегментах различные компоненты процесса (код программы, данные, стек и т. д.). Попутно выяснилось, что можно контролировать характер работы с конкретным сегментом, приписав ему атрибуты, например права доступа или типы операций, которые разрешается производить с данными, хранящимися в сегменте.
Рис.42 Сегменты процессов А и B
Некоторые сегменты, описывающие адресное пространство процесса, показаны на рисунке.
Большинство созданных ОС поддерживают сегментную организацию памяти. В некоторых архитектурах, например Intel и AMD, сегментация поддерживается на уровне оборудования.
Адреса, к которым обращается процесс, таким образом, отличаются от адресов, реально существующих в оперативной памяти. В каждом конкретном случае используемые программой адреса могут быть представлены различными способами. Например, адреса в исходных текстах обычно символические. Компилятор связывает эти символические адреса с перемещаемыми адресами (такими, как n байт от начала модуля). Подобный адрес, сгенерированный программой, обычно называют логическим (в системах с виртуальной памятью он часто называется виртуальным) адресом. Совокупность всех логических адресов называется логическим (виртуальным) адресным пространством.
Связывание адресов
Итак логические и физические адресные пространства ни по организации, ни по размеру не соответствуют друг другу. Максимальный размер логического адресного пространства обычно определяется разрядностью процессора (например, 264) и в современных системах значительно превышает размер физического адресного пространства. Следовательно, процессор и ОС должны быть способны отобразить ссылки в коде программы в реальные физические адреса, соответствующие текущему расположению программы в основной памяти. Такое отображение адресов называют трансляцией (привязкой) адреса или связыванием адресов
Связывание логического адреса, порожденного оператором программы, с физическим должно быть осуществлено до начала выполнения оператора или в момент его выполнения. Таким образом, привязка инструкций и данных к памяти в принципе может быть сделана на следующих шагах [Silberschatz, 2002].
- Этап компиляции (Compile time). Когда на стадии компиляции известно точное место размещения процесса в памяти, тогда непосредственно генерируются физические адреса. При изменении стартового адреса программы необходимо перекомпилировать ее код. В качестве примера можно привести .com программы MS-DOS, которые связывают ее с физическими адресами на стадии компиляции.
- Этап загрузки (Load time). Если информация о размещении программы на стадии компиляции отсутствует, компилятор генерирует перемещаемый код. В этом случае окончательное связывание откладывается до момента загрузки. Если стартовый адрес меняется, нужно всего лишь перезагрузить код с учетом измененной величины.
- Этап выполнения (Execution time). Если процесс может быть перемещен во время выполнения из одной области памяти в другую, связывание откладывается до стадии выполнения. Здесь желательно наличие специализированного оборудования, например регистров перемещения. Их значение прибавляется к каждому адресу, сгенерированному процессом.
Большинство современных ОС осуществляет трансляцию адресов на этапе выполнения, используя для этого специальный аппаратный механизм
Рис 4.4 Связывание адреса
Дата добавления: 2017-06-13; просмотров: 2968;