Горячего водоснабжения и причины коррозии


Системы горячего водоснабжения по сравнению с другими инженерными сооружениями (системами отопления, холодного водоснабжения и канализации) являются наименее надежными и долговечными. Если установленный и фактический сроки службы зданий оцениваются в 50–100 лет, а систем отопления, холодного водоснабжения и канализации в 20–25 лет, то для систем горячего водоснабжения при закрытой схеме теплоснабжения и выполнении коммуникаций из стальных труб без покрытий фактический срок службы не превышает 10 лет, а в отдельных случаях 2–3 года.

Трубопроводы горячего водоснабжения без защитных покрытий подвержены внутренней коррозии и значительному загрязнению ее продуктами. Это приводит к снижению пропускной способности коммуникаций, росту гидравлических потерь и нарушениям в подаче горячей воды, особенно на верхние этажи зданий при недостаточных напорах городского водопровода. В крупных системах горячего водоснабжения от центральных тепловых пунктов зарастание трубопроводов продуктами коррозии нарушает регулирование разветвленных систем и ведет к перебоям в подаче горячей воды. Из-за интенсивной коррозии, особенно внешних сетей горячего водоснабжения от ЦТП, возрастают объемы текущих и капитальных ремонтов. Последние связаны с частыми перекладками внутренних (в домах) и внешних коммуникаций, нарушением благоустройства городских территорий внутри кварталов, длительным прекращением подачи горячей воды большому количеству потребителей при выходе из строя головных участков трубопроводов горячего водоснабжения.

Коррозионные повреждения трубопроводов горячего водоснабжения от ЦТП в случае их совместной прокладки с разводящими сетями отопления приводят к затоплению последних горячей водой и их интенсивной внешней коррозии. При этом возникают большие трудности в обнаружении мест аварий, приходится выполнять большой объем земляных работ и ухудшать благоустройство жилых районов.

При незначительных различиях в капиталовложениях на сооружение систем горячего, холодного водоснабжения и отопления эксплуатационные расходы, связанные с частой перекладкой и ремонтом коммуникаций горячего водоснабжения, несоизмеримо более высокие.

Коррозия систем горячего водоснабжения и защита от нее приобретают особо важное значение в связи с размахом жилищного строительства в России. Тенденция укрупнения мощностей единичных установок приводит к разветвлению сети трубопроводов горячего водоснабжения, выполняемых, как правило, из обычных стальных труб без защитных покрытий. Все возрастающий дефицит воды питьевого качества обусловливает использование новых источников воды с высокой коррозионной активностью.

Одной из основных причин, влияющих на состояние систем горячего водоснабжения, является высокая коррозионная активность нагретой водопроводной воды. Согласно исследованиям ВТИ, коррозионная активность воды независимо от источника водоснабжения (поверхностный или подземный) характеризуется тремя основными показателями: индексом равновесного насыщения воды карбонатом кальция, содержанием растворенного кислорода и суммарной концентрацией хлоридов и сульфатов. Ранее в отечественной литературе не приводилась классификация нагретой водопроводной воды по коррозионной активности в зависимости от показателей исходной воды.

При отсутствии условий образования защитных карбонатных пленок на металле (j < 0) кислород выступает в основном как катодный деполяризатор, и высокие его концентрации приводят к усилению коррозии. Поэтому для оценки коррозионной активности нагретой водопроводной воды необходимо учитывать совместное воздействие растворенного кислорода и углекислых соединений.

Данные наблюдений за действующими системами горячего водоснабжения указывают на значительное влияние находящихся в водопроводной воде хлоридов и сульфатов на коррозию трубопроводов. Так, воды даже с положительным индексом насыщения, но содержащие хлориды и сульфаты в концентрациях свыше 50 мг/дм3, являются коррозионно-активными, что обусловлено нарушением сплошности карбонатных пленок и снижением их защитного действия под влиянием хлоридов и сульфатов. При разрушении защитных пленок присутствующие в воде хлориды и сульфаты усиливают коррозию стали под действием кислорода.

Исходя из принятой в теплоэнергетике шкалы коррозии и опытных данных ВТИ, по скорости коррозии стальных труб в нагретой питьевой воде предложена условная коррозионная классификация водопроводных вод при расчетной температуре 60 °С (табл. 3.3).

 

Рис. 3.2. Зависимость глубинного показателя П коррозии стальных труб в нагретой водопроводной воде (60 °С) от расчетного индекса насыщения J:

1, 2, 3 – поверхностный источник ; 4 – подземный источник ; 5 – поверхностный источник

На рис. 3.2. приведены опытные данные по скорости коррозии в образцах стальных труб при различном качестве водопроводной воды. На графике прослеживается определенная закономерность снижения глубинного показателя коррозии (глубинной проницаемости) с изменением расчетного индекса насыщения воды (при содержании хлоридов и сульфатов до 50 мг/дм3). При отрицательных значениях индекса насыщения глубинная проницаемость соответствует аварийной и сильной коррозии (точки 1 и 2); для речной воды с положительным индексом насыщения (точка 3) допустимой коррозии, а для артезианской воды (точка 4) – слабой коррозии. Обращает на себя внимание тот факт, что для артезианской и речной воды с положительным индексом насыщения и содержанием хлоридов и сульфатов менее 50 мг/дм3 различия в глубинной проницаемости коррозии сравнительно невелики. Это значит, что в водах, склонных к образованию на стенках труб окисно-карбонатной пленки (j > 0), присутствие растворенного кислорода (высокое в поверхностной и незначительное в подземной воде) не оказывает заметного влияния на изменение глубинной проницаемости коррозии. Вместе с тем данные испытаний (точка 5) свидетельствуют о значительном росте интенсивности коррозии стали в воде с высокой концентрацией хлоридов и сульфатов (в сумме около 200 мг/дм3), несмотря на положительный индекс насыщения (j = 0,5). Проницаемость коррозии в этом случае соответствует проницаемости в воде, имеющей индекс насыщения j = – 0,4. В соответствии с классификацией вод по коррозионной активности вода с положительным индексом насыщения и повышенным содержанием хлоридов и сульфатов относится к коррозионной.

 

Таблица 3.3

Классификация воды по коррозионной активности

J при 60 °С Концентрация в холодной воде, мг/дм3 Коррозионная характеристика нагретой воды (при 60 °С)
растворенного кислорода О2 хлоридов и сульфатов (в сумме)
Любая Любая Сильнокоррозионная
Любая >50 Сильнокоррозионная
Любая Коррозионная
Любая >50 Слабокоррозионная
>5 Слабокоррозионная
<50 Некоррозионная

 

Разработанная ВТИ классификация (табл. 3.3) достаточно полно отражает влияние качества воды на ее коррозионные свойства, что подтверждается данными о фактическом коррозионном состоянии систем горячего водоснабжения.

Анализ основных показателей водопроводной воды в ряде городов позволяет отнести большинство вод к типу сильнокоррозионных и коррозионных и только незначительную часть к типу слабокоррозионных и некоррозионных. Для большой доли источников характерна повышенная концентрация хлоридов и сульфатов (более 50 мг/дм3), и есть примеры, когда эти концентрации в сумме достигают 400–450 мг/дм3. Столь значительное содержание хлоридов и сульфатов в водопроводных водах обусловливает их высокую коррозионную активность.

При оценке коррозионной активности поверхностных вод необходимо учитывать непостоянство их состава в течение года. Для более надежной оценки следует пользоваться данными не единичных, а возможно большего числа анализов воды, выполненных в разные сезоны за один – два последних года.

Для артезианских источников показатели качества воды обычно очень стабильны в течение года. Как правило, подземные воды характеризуются повышенной минерализацией, положительным индексом насыщения по карбонату кальция и высоким суммарным содержанием хлоридов и сульфатов. Последнее приводит к тому, что системы горячего водоснабжения в некоторых городах, получающие воду из артезианских скважин, также подвержены сильной коррозии.

Когда в одном городе есть несколько источников питьевой воды, интенсивность и массовость коррозионных повреждений систем горячего водоснабжения могут быть различными. Так, в Киеве имеются три источника водоснабжения:
р. Днепр, р. Десна и артезианские скважины. Наиболее сильной коррозии подвержены системы горячего водоснабжения в районах города, снабжаемых коррозионной днепровской водой, в меньшей степени – системы, эксплуатируемые на слабокоррозионной деснянской воде, и в еще меньшей степени – на артезианской воде. Наличие районов в городе с разной коррозионной характеристикой водопроводной воды сильно затрудняет организацию противокоррозионных мероприятий как на стадии проектирования, так и в условиях эксплуатации систем горячего водоснабжения.

Для оценки коррозионного состояния систем горячего водоснабжения были проведены их обследования в ряде городов. Экспериментальные исследования скорости коррозии труб с помощью трубчатых и пластинчатых образцов были выполнены в районах нового жилищного строительства городов Москвы, Санкт-Петербурга и др. Результаты обследования показали, что состояние трубопроводов находится в прямой зависимости от коррозионной активности водопроводной воды.

Существенное влияние на размеры коррозионных повреждений в системе горячего водоснабжения оказывает высокая централизация установок по нагреву воды на центральных тепловых пунктах или теплораспределительных станциях (ТРС). Первоначально широкое строительство ЦТП в России было обусловлено рядом причин: отсутствием в новых жилых домах подвальных помещений, пригодных для размещения оборудования горячего водоснабжения; недопустимостью установки обычных (не бесшумных) циркуляционных насосов в индивидуальных тепловых пунктах; ожидаемым сокращением обслуживающего персонала в результате замены сравнительно мелких подогревателей, устанавливаемых в индивидуальных тепловых пунктах, крупными; необходимостью повышения уровня эксплуатации ЦТП путем их автоматизации и улучшения обслуживания; возможностью сооружения крупных установок по противокоррозионной обработке воды для систем горячего водоснабжения.

Однако как показал опыт эксплуатации ЦТП и систем горячего водоснабжения от них, количество обслуживающего персонала не сократилось из-за необходимости выполнять большой объем работ при текущем и капитальном ремонтах систем горячего водоснабжения. Централизованная противокоррозионная обработка воды на ЦТП не получила широкого распространения из-за сложности установок, высоких начальных и эксплуатационных затрат и отсутствия стандартного оборудования (вакуумная деаэрация).

В условиях, когда для систем горячего водоснабжения применяются преимущественно стальные трубы без защитных покрытий, при высокой коррозионной активности водопроводных вод и отсутствии на ЦТП противокоррозионной обработки воды дальнейшее строительство только ЦТП, по-видимому, нецелесообразно. Строительство в последние годы домов новых серий с подвальными помещениями и производство бесшумных центробежных насосов будут способствовать переходу во многих случаях к проектированию индивидуальных тепловых пунктов (ИТП) и повышению надежности горячего водоснабжения.

 

3.8. Консервация теплоэнергетического оборудования

и теплосетей

Общее положение

Консервация оборудования – это защита от так называемой стояночной коррозии.

Консервация котлов и турбоустановок для предотвращения коррозии металла внутренних поверхностей осуществляется при режимных остановках и выводе в резерв на определенный и неопределенный сроки: вывод – в текущий, средний, капитальный ремонт; аварийные остановы, в продолжительный резерв или ремонт, на реконструкцию на срок выше 6 месяцев.

На основе производственной инструкции на каждой электростанции, котельной должно быть разработано и утверждено техническое решение по организации консервации конкретного оборудования, определяюще способы консервации при различных видах остановов и продолжительности простоя технологической схемы и вспомогательного оборудования.

При разработке технологической схемы консервации целесообразно максимально использовать штатные установки коррекционной обработки питательной и котловой воды, установки химической очистки оборудования, баковое хозяйство электростанции.

Технологическая схема консервации должна быть по возможности стационарной, надежно отключаться от работающих участков тепловой схемы.

Необходимо предусматривать нейтрализацию или обезвреживание сбросных вод а, также возможность повторного использования консервирующих растворов.

B соответствии с принятым техническим решением составляется и утверждается инструкция по консервации оборудования с указаниями по подготовительным операциям, технологии консервации и расконсервации, а также по мерам безопасности при проведении консервации.

При подготовке и проведении работ по консервации и расконсервации необходимо соблюдать требования Правил техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей. Также при необходимости должны быть приняты дополнительные меры безопасности, связанные со свойствами используемых химических реагентов.

Нейтрализация и очистка отработанных консервирующих растворов химических реагентов должна осуществляться в соответствии с директивными документами.

 



Дата добавления: 2017-03-12; просмотров: 6852;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.