Бернулли для струйки и потока идеальной жидкости




 

Воспользуемся основным законом механики, а именно:

Равнодействующая всех сил, действующих на данное тело, равна массе тела, умноженной на ускорение, с которым движется это тело.

Полная сила инерции равна: I = - m(dV/dt). Будучи отнесенной к единице массы, полная сила инерции даст единичную силу инерции.

Ее проекции на координатные оси будут равны :

, , .

Теперь необходимо внести эти составляющие в уравнения Эйлера дл гидростатики и получим уравнения всех единичных сил, действующих движущейся жидкости.

Преобразуем уравнения Эйлера к следующему виду:

Или после преобразований

Эти уравнения носят название дифференциальных уравнений Эйлера для движущейся идеальной жидкости. Они устанавливают связь между проекциями объемных, массовых сил и скоростей, давлением и плотностью жидкости и являются основой для изучения некоторых вопросов гидродинамики.

Уравнения не учитывают ни сил трения, ни сил сцепления (вязкости), т.к. уравнения получены из уравнений статики, а в статических уравнениях данные величины не фигурируют.

Далее рассмотрим уравнения живых сил, для чего умножим уравнения у Эйлера на dx, dy, dz соответственно, и сложим их почленно:

.

Для установившегося движения в скобках слева стоит полный дифференциал давления dp. Справа будем иметь:

dx/dt = Vx; dy/dt = VY; dz/dt = Vz

Тогда VxdVx = d(Vx2/2); VydVy = d(VY2/2); VzdVz = d(Vz2/2).

Но сумма полных дифференциалов трех составляющих скорости по осям х, у, z равна полному дифференциалу скорости:

d(Vx2/2) +d(VY2/2) +d(Vz2/2) =d(V2/2) Окончательно получим закон живых сил в следующем виде:

d(V2/2) = Xdx + Ydy +Zdz -dp/p

Закон живых сил можно сформулировать в следующем виде: дифференциал кинетической энергии частицы идеальной жидкости при установившемся движении равен сумме элементарных работ сил тяжести и сил давления.

Рассмотрим наиболее важный для практики случай движения жидкости: Расположим в несжимаемой жидкости, находящейся под действием силы тяжести в установившемся движении, оси координат так, что ось z была направлена вверх параллельно направлению действия силы тяжести. Тогда X=Y=0, Z=-g (знак «минус» поставлен, т.к. ось Z направлена вверх, а ускорение g вниз) и уравнение живых сил перепишется в следующем виде:

.

Перенеся все составляющие в левую часть, получим:

.

Разделим каждый член на g и сумму дифференциалов заменим дифференциалом суммы:

.

После интегрирования получим уравнение Бернулли для элементарной струйки жидкости в установившемся движении:

.

 

Дифференциал равен нулю, если под знаком дифференциала стоит постоянная величина.

Все три члена уравнения Бернулли представляют собой механическую энергию, поэтому можно сделать следующее заключение: вдоль линии тока несжимаемой и невязкой жидкости запас механической энергии, отнесенный к единице массы, веса или объема остается постоянным.

Механическую энергию жидкости, отнесенную к единице веса, называют полным напором; суммы энергии сил давления и положения, отнесенную к единице веса - статическим напором. Вдоль данной линии тока (в установившемся движении жидкости) сумма скоростного и статического напоров остается постоянной.

Если вспомним, что P/pg пьезометрический напор, a z геометрический, а также введя понятие скоростного (динамического) напора V2/2g , то можно сказать, что сумма скоростного, пьезометрического и геометрического напоров вдоль линии тока есть величина постоянная.

Так как сумма z+P/pg представляет собой удельную потенциальную энергию жидкости, a V2/2g- удельную кинетическую энергию, то уравнение Бернулли устанавливает постоянство полной энергии (суммы кинетической и потенциальной энергии) и является частным случае/закона сохранения энергии.

Получим теперь уравнение Бернулли для потока идеальной жидкости, для чего подсчитаем полную энергию жидкости в живом сечении, умножив все составляющие на весовой расход элементарной струйки и проинтегрировав по площади живого сечения :

.

Т.к. давление распределяется по закону гидростатики, то z+P/pg =const и может быть вынесено за знак интеграла. Кроме того, скорости всех элементарных трубок одинаковы, поэтому также выносится за знак интеграла. Тогда получим:

.

Возвратясь теперь к размерности удельной энергии, получим уравнение Бернулли для потока идеальной жидкости:

.

Уравнение не учитывает потерь напора и неравномерности распределения скоростей по сечению потока, возникающих при движении • реальной жидкости.

Рассмотрим построение пьезометрической и напорной линии для случая движения идеальной жидкости (рис. 28).

В случае идеальной жидкости полный напор (полная энергия) остается постоянной вдоль всего потока, а потенциальная и кинетическая энергии (гидростатический и скоростной напоры) могут переходить друг в друга. Например: уменьшение диаметра трубопровода приведет к увеличению скорости и скоростного напора, соответственно, давление в этом сечении (пьезометрический напор) уменьшится.

Расположим в нескольких сечениях пьезометрические и гидродинамические трубки. Для идеальной жидкости во всех гидродинамических трубках уровень жидкости будет одинаков и выше, чем в пьезометрических, на величину скоростного напора (удельной кинетической энергии). Соединим уровни жидкости в пьезометрах - получим пьезометрическую линию. А, соединив уровни жидкости в гидродинамических трубках, получим напорную линию. Напорная линия представляет собой горизонтальную прямую.

Рисунок 28 - Пример построения пьезометрической и напорной линии для идеальной жидкости

 






Дата добавления: 2017-01-16; просмотров: 1300; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.027 сек.