Открытие естественной радиоактивности
На границе двух последних веков произошло событие, изменившее судьбу человечества.
Французский физик Антуан Беккерель в одном из своих опытов завернул кристаллы сульфата уранил-калия K2(UO2)(SO4)2 в черную светонепроницаемую бумагу и положил сверток на фотопластинку. После проявления он обнаружил на ней очертания кристаллов. Так была открыта естественная радиоактивность соединений урана.
Наблюдения Беккереля заинтересовали французский ученых, физика и химика Мари Склодовскую-Кюри и ее супруга физика Пьера Кюри. Они занялись поисками новых радиоактивных химических элементов в минералах урана. Найденные ими в 1898 году полоний Po и радий Ra оказались продуктами распада атомов урана. Это была уже настоящая революция в химии, так как до этого атомы считались неделимыми, а химические элементы - вечными и неразрушимыми.
В ХХ веке в химии произошло много интересных открытий. Вот только небольшая часть из них. С 1940 по 1988 гг. было синтезировано 20 новых химических элементов, не найденных в природе, в том числе технеций Tc и астат At. Удалось получить элементы, находящиеся в Периодической системе после урана, от нептуния Np с атомным номером 93 до элемента, не имеющего до сих пор общепризнанного названия, с атомным номером 114.
Происходит постепенное слияние неорганической и органической химии и образованием на их основе химии металлоорганических соединений, бионеорганической химии, химии кремния и бора, химии комплексных соединений. Начало этому процессу положил датский химик-органик Вильям Цейзе, синтезировавший в 1827 году необычное соединение трихлороэтиленплатинат(II) калия K[Pt(C2H4)Cl3]. Только в 1956 году удалось установить характер химических связей в этом соединении.
Во второй половине XX века удалось получить искусственным путем такие очень сложные природные вещества, как хлорофилл и инсулин. Были также синтезированы соединения благородных газов от радона Rn до аргона Ar, считавшихся ранее инертными, неспособными к химическому взаимодействию. Положено начало получению топлива из воды и света.
Возможности химии оказались беспредельными, а самые необузданные фантазии человека в области синтеза веществ с необычными свойствами - осуществимыми. Их реализацией и займется молодое поколение химиков первой половины XXI века.
Открытие электрона
Гипотеза о существовании элементарного электрического заряда. Опыты Фарадея показали, что для разных электролитов электрохимический эквивалент k вещества оказывается различным, но, чтобы выделить на электроде один моль любого одновалентного вещества, требуется пропустить один и тот же заряд F, равный примерно 9.6*104 Кл. Более точное значение этой величины, называемой постоянной Фарадея, равно F=96485 Кл*моль-1.
Если 1 моль ионов при пропускании электрического тока через раствор электролита переносит электрический заряд, равный постоянной Фарадея F, то на долю каждого иона приходится электрический заряд, равный
. (12.10)
На основании такого расчета ирландский физик Д. Стоней высказал предположение о существовании внутри атомов элементарных электрических зарядов. В 1891 г. минимальный электрический заряд е он предложил назвать электроном.
Измерение заряда иона. При пропускании через электролит постоянного электрического тока за время t к одному из электродов приходит электрический заряд, равный произведению силы тока I на время t. С другой стороны, этот электрический заряд равен произведению заряда одного иона q0 на число ионов N:
It = q0N. (12.11)
Отсюда получаем
(12.12)
Так как
(12.13)
то из выражений (12.12) и (12.13) находим
.
Таким образом, для экспериментального определения заряда одного иона нужно измерить силу постоянного тока I, проходящего через электролит, время t пропускания тока и массу m вещества, выделившегося у одного из электродов. Необходимо знать также молярную массу вещества M.
Открытие электрона. Установление закона электролиза еще не доказало строго, что в природе существуют элементарные электрические заряды. Можно, например, предположить, что все одновалентные ионы имеют различные электрические заряды, но их среднее значение равно элементарному заряду е.
Для того чтобы выяснить, существует ли в природе элементарный заряд, необходимо было измерить не суммарное количество электричества, переносимое большим числом ионов, а заряды отдельных ионов. Неясным был и вопрос о том, обязательно ли заряд связан с частицами вещества и, если связан, с какими именно.
Важный вклад в решение этих вопросов был сделан в конце XIX в. при исследовании явлений, возникающих при пропускании электрического тока через разреженные газы. В опытах было обнаружено свечение стекла разрядной трубки за анодом. На светлом фоне светящегося стекла была видна тень от анода, как будто бы свечение стекла вызывалось каким-то невидимым излучением, распространяющимся прямолинейно от катода к аноду. Это невидимое излучение назвали катодными лучами.
Французский физик Жан Перрен в 1895 г. установил, что «катодные лучи» в действительности являются потоком отрицательно заряженных частиц.
Исследуя законы движения частиц катодных лучей в электрических и магнитных полях, английский физик Джозеф Томсон (1856—1940) установил, что отношение электрического заряда каждой из частиц к ее массе является величиной, одинаковой для всех частиц. Если предположить, что каждая частица катодных лучей имеет заряд, равный элементарному заряду е, то придется сделать вывод, что масса частицы катодных лучей меньше одной тысячной массы самого легкого из известных атомов — атома водорода.
Далее Томсон установил, что отношение заряда частиц катодных лучей к их массе получается одинаковым при наполнении трубки различными газами и при изготовлении катода из разных металлов. Следовательно, одинаковые частицы входили в состав атомов различных элементов.
На основании результатов своих опытов Томсон сделал вывод, что атомы вещества не являются неделимыми. Из атома любого химического элемента могут быть вырваны отрицательно заряженные частицы с массой, меньшей одной тысячной массы атома водорода. Все эти частицы имеют одинаковую массу и обладают одинаковым электрическим зарядом. Эти частицы называют электронами.
Опыт Милликена. Окончательное доказательство существования элементарного электрического заряда было дано опытами, которые выполнил в 1909— 1912 гг. американский физик Роберт Милликен (1868— 1953). В этих опытах измерялась скорость движения капель масла в однородном электрическом поле между двумя металлическими пластинами. Капля масла, не имеющая электрического заряда из-за сопротивления воздуха падает с некоторой постоянной скоростью. Если на своем пути капля встречается с ионом и приобретает электрический заряд q, то на нее, кроме силы тяжести, действует еще кулоновская сила со стороны электрического поля. В результате изменения силы, вызывающей движение капли, изменяется скорость ее движения. Измеряя скорость движения капли и зная напряженность электрического поля, в котором происходило ее движение, Милликен мог определить заряд капли.
Опыт Милликена был повторен одним из основателей советской физики — Абрамом Федоровичем Иоффе (1880— 1960). В опытах Иоффе для определения элементарного электрического заряда вместо капель масла использовались металлические пылинки. Изменением напряжения между пластинами достигалось равенство кулоновской силы и силы тяжести (рис. 12.2), пылинка в этом случае была неподвижной:
mg=q1E1.
Рисунок 12. 2
При освещении пылинки ультрафиолетовым светом ее заряд изменялся и для уравновешивания силы тяжести нужно было изменить напряженность электрического поля между пластинами:
mg=q2E2.
По измеренным значениям напряженности электрического поля можно было определить отношение электрических зарядов пылинки:
mg = q1E1 = q2E2 = … = qnEn;
Опыты Милликена и Иоффе показали, что заряды капель и пылинок всегда изменяются скачкообразно. Минимальная «порция» электрического заряда — элементарный электрический заряд, равный
e=1,602*10-19 Кл.
Электрический заряд любого тела всегда целочисленно кратен элементарному электрическому заряду. Других «порций» электрического заряда, способных переходить от одного тела к другому, в природе до сих пор экспериментально обнаружить не удалось. В настоящее время имеются теоретические предсказания о существовании элементарных частиц — кварков — с дробными электрическими зарядами, равными 1/Зе и 2/Зе.
Опыт Беккереля
Открытие естественной радиоактивности – явление, доказывающее сложный состав атомного ядра, произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. Слушая сообщения об опытах Рентгена на заседании Французской Академии 20 января 1896 года и наблюдая за демонстрацией возникновения рентгеновских лучей в разрядной трубке, Беккерель неотрывно смотрит на зеленоватое светящееся пятно на стекле возле катода. Мысль которая его преследует: может быть, свечение образцов его коллекции тоже сопровождается испусканием рентгеновских лучей? Тогда рентгеновские лучи можно будет получать, не прибегая к помощи разрядной трубки.
Беккерель обдумывает свой эксперимент, выбирает из своей коллекции двойную сернокислую соль урана и калия, кладет соль на фотопластинку, спрятанную от света в черную бумагу, и выставляет пластинку с солью на солнце.
После проявления фотопластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое - то излучение, которое пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких-либо внешних влияний создают какое-то излучение. Начались интенсивные исследования.
Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам.
Способность урана испускать лучи не ослабевали месяцами. 18 мая 1896 года Беккерель со всей определенностью констатировал наличие этой способности у урановых соединений и описал свойства излучения. Но чистый уран оказался в распоряжении Беккереля только осенью, и 23 ноября 1896 года Беккерель сообщил о свойстве урана испускать невидимые урановые лучи вне зависимости от его химического и физического состояния.
Исследования Кюри.
В 1878 году Пьер Кюри стал демонстратором в физической лаборатории Сорбонны, где занялся исследованием природы кристаллов. Вместе со своим старшим братом Жаком, работавшим в минералогической лаборатории университета, Пьер в течение четырех лет проводил интенсивные экспериментальные работы в этой области. Братья Кюри открыли пьезоэлектричество – появление под действием приложенной извне силы на поверхности некоторых кристаллов электрических зарядов. Ими был открыт и обратный эффект: те же кристаллы под действием электрического поля испытывают сжатие.
Если приложить к таким кристаллам переменный ток, то их можно заставить совершать колебания с ультравысокими частотами, при которых кристаллы будут испускать звуковые волны за пределами восприятия человеческого слуха. Такие кристаллы стали очень важными компонентами такой радиоаппаратуры, как микрофоны, усилители и стереосистемы.
Братья Кюри разработали и построили такой лабораторный прибор, как пьезоэлектрический кварцевый балансир, который создает электрический заряд, пропорциональный приложенной силе. Его можно считать предшественником основных узлов и модулей современных кварцевых часов и радиопередатчиков. В 1882 г. по рекомендации английского физика Уильяма Томсона Кюри был назначен руководителем лаборатории новой Муниципальной школы промышленной физики и химии. Хотя жалованье в школе было более чем скромным, Кюри оставался главой лаборатории в течение двадцати двух лет. Через год после назначения Пьера Кюри руководителем лаборатории сотрудничество братьев прекратилось, так как Жак покинул Париж, чтобы стать профессором минералогии университета Монпелье.
В период с 1883 по 1895 годов П. Кюри выполнил большую серию работ, в основном по физике кристаллов. Его статьи по геометрической симметрии кристаллов и поныне не утратили своего значения для кристаллографов. С 1890 по 1895 г. Кюри занимался изучением магнитных свойств веществ при различных температурах. На основании большого числа экспериментальных данных в его докторской диссертации была установлена зависимость между температурой и намагниченностью, впоследствии получившая название закона Кюри.
Закон Кюри - установленная Пьером Кюри (1895) зависимость магнитной восприимчивости Х от температуры Т в виде Х= C/T (С — постоянная Кюри) для парамагнетиков, в которых магнитные моменты атомов слабо взаимодействуют друг с другом. |
Работая над диссертацией, Пьер Кюри в 1894 г. встретился с Марией Склодовской, молодой польской студенткой физического факультета Сорбонны. Они поженились 25 июля 1895 года, через несколько месяцев после того, как Кюри защитил докторскую диссертацию. В 1897 году, вскоре после рождения первого ребенка - Ирен, Мария Кюри приступила к исследованиям радиоактивности, которые вскоре поглотили внимание Пьера до конца его жизни.
В 1896 году Анри Беккерель открыл, что урановые соединения постоянно испускают излучение, способное засвечивать фотографическую пластинку. Выбрав это явление темой своей докторской диссертации, Мари стала выяснять, не испускают ли другие соединения «лучи Беккереля». Так как Беккерель обнаружил, что испускаемое ураном излучение повышает электропроводность воздуха вблизи препаратов, она использовала для измерения электропроводности пьезоэлектрический кварцевый балансир братьев Кюри.
Вскоре Мария Кюри пришла к заключению, что только уран, торий и соединения этих двух элементов испускают излучение Беккереля, которое она позднее назвала радиоактивностью. Мария в самом начале своих исследований совершила важное открытие: урановая смоляная обманка (урановая руда) электризует окружающий воздух гораздо сильнее, чем содержащиеся в ней соединения урана и тория, и даже чем чистый уран. Из этого наблюдения она сделала вывод о существовании в урановой смоляной обманке еще неизвестного сильно радиоактивного элемента. В 1898 г. Мария Кюри сообщила о результатах своих экспериментов Французской академии наук. Убежденный в том, что гипотеза его жены не только верна, но и очень важна, Пьер Кюри оставил свои собственные исследования, чтобы помочь Марии выделить неуловимый элемент. С этого времени интересы супругов Кюри как исследователей слились настолько полно, что даже в своих лабораторных записях они всегда употребляли местоимение «мы».
Супруги Кюри поставили перед собой задачу разделить урановую смоляную обманку на химические компоненты. После трудоемких операций они получили небольшое количество вещества, обладавшее наибольшей радиоактивностью. Оказалось, что выделенная порция содержит не один, а два неизвестных радиоактивных элемента. В июле 1898 г. Пьер и Мария Кюри опубликовали статью «О радиоактивном веществе, содержащемся в урановой смоляной обманке», в которой сообщали об открытии одного из элементов, названным полонием в честь родины Марии Склодовской Польши.
В декабре они объявили об открытии второго элемента, который назвали радием. Оба новых элемента были во много раз более радиоактивны, чем уран или торий, и составляли одну миллионную часть урановой смоляной обманки. Чтобы выделить из руды радий в достаточном для определения его атомного веса количестве, Кюри в последующие четыре года переработали несколько тонн урановой смоляной обманки. Работая в примитивных и вредных условиях, они производили операции химического разделения в огромных чанах, установленных в дырявом сарае, а все анализы – в крохотной, бедно оснащенной лаборатории Муниципальной школы.
В сентябре 1902 года супруги Кюри сообщили о том, что им удалось выделить одну десятую грамма хлорида радия и определить атомную массу радия, которая оказалась равной 225. (Выделить полоний Кюри не удалось, так как он оказался продуктом распада радия.) Соль радия испускала голубоватое свечение и тепло. Это фантастически выглядевшее вещество привлекло к себе внимание всего мира. Признание и награды за его открытие пришли почти сразу.
Кюри опубликовали огромное количество информации о радиоактивности, собранной ими за время исследований: с 1898 по 1904 г. они выпустили тридцать шесть работ. Еще до завершения своих исследований. Кюри побудили других физиков также заняться изучением радиоактивности. В 1903 г. Эрнест Резерфорд и Фредерик Содди высказали предположение о том, что радиоактивные излучения связаны с распадом атомных ядер. Распадаясь (утрачивая какие-то из образующих их частиц), радиоактивные ядра претерпевают трансмутацию в другие элементы. Кюри одними из первых поняли, что радий может применяться и в медицинских целях. Заметив воздействие излучения на живые ткани, они высказали предположение, что препараты радия могут оказаться полезными при лечении опухолевых заболеваний.
Шведская королевская академия наук присудила супругам Кюри половину Нобелевской премии по физике 1903 г. «в знак признания... их совместных исследований явлений радиации, открытых профессором Анри Беккерелем», с которым они разделили премию. Кюри были больны и не смогли присутствовать на церемонии вручения премий. В своей Нобелевской лекции, прочитанной два года спустя, Кюри указал на потенциальную опасность, которую представляют радиоактивные вещества, попади они не в те руки, и добавил, что «принадлежит к числу тех, кто вместе с химиком и бизнесменом Альфредом Нобелем считает, что новые открытия принесут человечеству больше бед, чем добра».
Радий – элемент, встречающийся в природе крайне редко, и цены на него, с учетом его медицинского значения, быстро возросли. Кюри жили бедно, и нехватка средств не могла не сказываться на их исследованиях. Вместе с тем они решительно отказались от патента на свой экстракционный метод, равно как и от перспектив коммерческого использования радия. По их убеждению, это противоречило бы духу науки – свободному обмену знаниями. Несмотря на то, что такой отказ лишил их немалой прибыли, финансовое положение Кюри улучшилось после получения Нобелевской премии и других наград.
В октябре 1904 г. Пьер Кюри был назначен профессором физики Сорбонны, а Мария Кюри – заведующей лабораторией, которой прежде руководил ее муж. В декабре того же года у Кюри родилась вторая дочь, Ева. Возросшие доходы, улучшившееся финансирование исследований, планы создания новой лаборатории, восхищение и признание мирового научного сообщества должны были сделать последующие годы супругов Кюри плодотворными. Но, как и Беккерель, Кюри ушел из жизни слишком рано, не успев насладиться триумфом и свершить задуманное. В дождливый день 19 апреля 1906 г., переходя улицу в Париже, он поскользнулся и упал. Голова его попала под колесо проезжавшего конного экипажа. Смерть наступила мгновенно.
Мария Кюри унаследовала его кафедру в Сорбонне, где продолжила свои исследования радия. В 1910 г. ей удалось выделить чистый металлический радий, а в 1911 г. она была удостоена Нобелевской премии по химии. В 1923 г. Мари опубликовала биографию Кюри. Старшая дочь Кюри, Ирен (Ирен Жолио-Кюри), разделила со своим мужем Нобелевскую премию по химии 1935 г.; младшая, Ева, стала концертирующей пианисткой и биографом своей матери. Серьезный, сдержанный, всецело сосредоточенный на своей работе, Пьер Кюри был вместе с тем добрым и отзывчивым человеком. Он пользовался довольно широкой известностью как натуралист-любитель. Одним из излюбленных его развлечений были пешие или велосипедные прогулки. Несмотря на занятость в лаборатории и семейные заботы, Кюри находили время для совместных прогулок.
Помимо Нобелевской премии, Кюри был удостоен еще нескольких наград и почетных званий, в том числе медали Дэви Лондонского королевского общества (1903) и золотой медали Маттеуччи Национальной Академии наук Италии (1904). Он был избран во Французскую академию наук (1905).
Работы Пьера и Мари Кюри открыли дорогу исследованиям структуры ядер и привели к современным достижениям в освоении ядерной энергии.
Дата добавления: 2017-01-16; просмотров: 3627;