Генераторы синусоидальных колебаний
Любой генератор состоит из усилителя и цепи положительной обратной связи. Структурная схема генератора представлена на рис. 14.12.
Рис. 14.12 |
За счет влияния цепи обратной связи на делитель на его выходе появляется напряжение даже при отсутствии напряжения на входе, т.е. происходит самовозбуждение делителя и превращение его в генератор.
Чтобы на выходе генератора получить периодические колебания заданной частоты, в цепь его обратной связи необходимо включить колебательный контур, настроенный на данную частоту. В зависимости от состава элементов контура автогенераторы бывают LC и RC-типов (рис. 14.13).
а) б)
Рис. 14.13
Схема LC -генератора (рис.14.13 а) объединяет однокаскадный делитель на транзисторе VT и колебательный контур LC, включенный в цепь положительной обратной связи генератора. Подбором L и C устанавливают требуемую частоту колебаний .
После включения источника питания в контуре LC возникают колебания и переменный ток базы усиливается транзистором. Протекающий через катушку ток коллектора создает на ней падение напряжения, которое в противофазе (вследствие встречного включения катушек и ) за счет индуктивной связи между катушками подается в колебательный контур. Амплитуда колебаний постепенно возрастает до определенного значения (насыщения транзистора) и в дальнейшем не изменяется.
Недостатком рассмотренной схемы генератора является большое влияние температуры на амплитуду и частоту вырабатываемых напряжений. Поэтому часто эти схемы дополняют элементами, стабилизирующими параметры генерируемых напряжений.
Для получения периодических напряжений низкой частоты (от долей герца до нескольких килогерц) целесообразно в генераторе вместо LC контура использовать RC-цепь (рис. 14.13 б).
Эта замена упрощает конструкцию и снижает массу генератора. В отличие от LC-генератора в этой схеме положительная обратная связь образована частотно-зависимой RC-цепью. Если выходное напряжение генератора, снимаемое с коллектора транзистора, подать непосредственно на вход усилителя (на базу транзистора), то создается отрицательная обратная связь.
Чтобы получить одинаковые фазы выходного и входного напряжений, необходимо напряжение на RC-цепи сдвинуть на 180°. Это осуществляют тремя RC-элементами, каждый из которых позволяет получить фазовый сдвиг на 60°. Несмотря на усложнение схемы генератора, она проста в реализации, особенно для низких частот, так как не требует индуктивных катушек, имеющих большие габариты и массу.
Мультивибраторы
Генератор, представляющий собой двухэлементный усилитель с емкостной связью, выход которого соединен с входом, называют мультивибратором.
Мультивибраторы бывают симметричные, если транзисторы VT1 и VT2 (рис. 14.14) и аналогичные элементы схемы каждого усилителя одинаковы, и несимметричным, если эти условия не выполняются.
Рис. 14.15
Транзисторы в данной схеме работают в ключевом режиме. Мультивибратор может иметь два состояния равновесия. В одном из них транзистор VT1 полностью открыт, а транзистор VT2 закрыт (состояние отсечки). В другом –наоборот, транзистор VT1 закрыт, а транзистор VT2 открыт (режим насыщения). Каждое из этих состояний неустойчиво Когда отрицательный потенциал базы закрытого транзистора при зарядке соответствующего конденсатора достигает потенциала источника питания, равновесие нарушается, закрытый транзистор открывается, а открытый, наоборот, закрывается. Мультивибратор переходит в новое состояние равновесия. Временная диаграмма работы мультивибратора показана на рис. 14.15.
Мультивибраторы, работающие в автоколебательном режиме, используют в электронных устройствах в качестве задающих генераторов и делителей частоты.
Широкое распространение получили мультивибраторы, построенные на основе интегральных операционных усилителей и компараторов. Они характеризуются сравнительно высокой стабильностью работы.
Простейшая схема мультивибратора на основе ОУ показана на рис. 14.16.
Мультивибратор охвачен обратной связью через делитель R1, R2, а времязадающая RC-цепь подключена к инвертирующему вводу. Амплитуда выходного сигнала и длительность импульсов данной схемы зависит от напряжения источника питания и температуры. Эти недостатки можно исключить, дополнив схему диодным ограничителем на стабилитронах.
Рис. 14.16 |
Глава 15. ЭЛЕКТРОННЫЕ КОММУТИРУЮЩИЕ ЭЛЕМЕНТЫ
И УСТРОЙСТВА
Электронные ключи
Для выполнения различных коммутаций в устройствах автоматики и вычислительной техники, включения и выключения элементов, источников питания используют электронные ключи.
В статическом режиме ключ может находиться либо в замкнутом состоянии (включенном), либо в разомкнутом (выключенном). Основу любого ключа составляет активный элемент (диод, транзистор, тиристор), работающий в ключевом режиме.
Электронные ключи характеризуют следующими параметрами: переключательной характеристикой, представляющей собой зависимость ; нагрузочной характеристикой, определяемой зависимостью выходного параметра от нагрузки; помехоустойчивостью и мощностью, потребляемой от источника питания.
Простейшая схема ключа может быть реализована на основе диода (рис. 15.1). Замкнутому положению такого ключа соответствует наличие на его входе напряжения положительной полярности. Если на входе действует сигнал полярности, то ключ открыт – разомкнут.
Диодные ключи применяют в основном для ограничения амплитуд напряжения. Их недостатками являются невозможность усиления входного напряжения и наличие непосредственной связи между выходной и входной цепями.
Такие недостатки отсутствуют у транзисторных ключей (рис. 15.2), так как закрытый биполярный транзистор имеет очень большое сопротивление, а открытый – очень малое. Кроме того, транзисторный ключ позволяет усиливать входной сигнал по мощности и разделять выходную и входную цепи. При отсутствии входного сигнала транзистор закрыт и ток его коллектора очень мал. При поступлении на вход импульса прямоугольной формы транзистор открывается и в цепи коллектора протекает максимальный ток, зависящий от крутизны его выходной характеристики. Особенностью такого ключа является сохранение напряжения в течение некоторого времени на его выходе после исчезновения входного импульса.
Это явление обусловлено временем жизни неосновных носителей зарядов в области базы транзистора. Для уменьшения времени нарастания (фронта) и спада (среза) выходного импульса применяют различные способы. Один из них – использование RC-цепи на входе схемы. В момент нарастания импульса конденсатор заряжается, в момент спада – разряжается через резистор. При этом на резисторе, значит, и на базе транзистора создается положительный потенциал, запирающий транзистор, и вследствие этого ток коллектора быстро уменьшается.
Время переключения ключей на биполярных транзисторах, а также входное сопротивление можно увеличить, используя вместо биполярных транзисторов полевые (рис. 15.3).
Триггеры
Электронное устройство, имеющее два устойчивых стационарных состояния, в котором переходы из одного состояния в другое и обратно осуществляются под действием запускающих импульсов, называется триггером. Триггер содержит два транзистора, включенных по схеме с общим эмиттером и образующих двухэлементный усилитель постоянного тока, охваченный положительной обратной связью по напряжению (рис. 15.4 а).
Рис. 15.4
Стационарные режимы триггера возможны при равенстве входного и выходного напряжений (точки 2, А, 1 на рис. 15.4 б). Стационарный режим, соответствующий точке А, неустойчивый.
При любом незначительном отклонении от этого режима триггер переходит в одно из двух устойчивых состояний: 1 или 2. В состоянии 1 транзистор VT1 открыт, VT2 закрыт. В состоянии 2 наоборот. Переход триггера из одного состояния в другое возможен, например, при подаче короткого положительного импульса на базу или короткого отрицательного импульса на коллектор закрытого транзистора.
В современной электронике триггеры выполняются на базе интегральных микросхем, построенных на основе логических элементов (см. гл. 16) и относятся к базовым элементам цифровой и электронно-вычислительной техники.
Электронные реле
Для управления различными технологическими процессами переключения (включения, выключения) в производстве и быту широко применяются бесконтактные коммутирующие устройства, называемые электронными реле.
Электронные реле в настоящее время выполняют на основе интегральных микросхем. Основной частью электронного реле является усилитель постоянного тока. На вход усилителя подается сигнал от преобразователя электрической величины, устройство которого зависит от типа реле. Это может быть фотоэлектрический преобразователь (фотоэлектронное реле), термопара или терморезистор (тепловое реле), RC-цепь для задания времени срабатывания и др. На рис. 15.5 представлена схема простейшего электронного реле, выполненного на интегральном усилителе типа К118ТЛ1Г: а – реле времени, б – фотореле, в – тепловое реле.
а) б) в)
Рис. 15.5
При подключении RС-цепи к источнику постоянного напряжения начинает заряжаться конденсатор. Как только напряжение на нем достигает значения, достаточного для срабатывания усилителя, на его выходе появляется напряжение Продолжительность выдержки реле определяется постоянной времени заряда конденсатора . По истечении времени напряжение на конденсаторе становится почти равным ( ), а продолжительность выдержки (с) реле
, (15.1)
где – напряжение срабатывания реле.
Продолжительность выдержки реле регулируют изменением сопротивления резистора , через который заряжается конденсатор. Для повторного срабатывания реле необходимо отключить его от источника питания для возврата реле в первоначальное состояние.
В схеме фотореле (рис. 15.5 б) чувствительным к свету элементом является фоторезистор. Принцип действия такой схемы аналогичен рассмотренной. Чувствительность фотореле устанавливают переменным резистором , при регулировании которого изменяют входное напряжение усилителя – напряжение срабатывания реле. Особенностью конструкции фотореле является необходимость защиты фоторезистора от посторонних источников света, воздействие которых может привести к ложному срабатыванию реле.
В схеме теплового реле (рис. 15.5 в) чувствительном к температуре элементом является терморезистор – резистор, сопротивление которого в большей мере зависит от температуры окружающей среды. Изменение сопротивления терморезистора под действием температуры ведет к изменению напряжения на нем. Это напряжение поступает на вход усилителя. Чувствительность теплового реле, как и фотореле, регулируют переменным резистором .
Особенностью электронных реле является необходимость их предварительной градуировки. Для градуировки фотореле применяют источник света с регулируемым световым потоком и образцовый прибор для измерения освещенности – люксметр, для градуировки теплового реле – регулируемый источник тепла и образцовый термометр; для реле времени – секундомер.
Дата добавления: 2017-01-16; просмотров: 2963;