Геофизические методы исследования земной коры. Электроразведка
Электроразведка (точнее электромагнитная разведка) объединяет физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных космических, атмосферных, физико-химических процессов, либо созданных искусственно. Используемые поля могут быть: установившимися, т.е. существующими свыше секунды (постоянными и переменными, гармоническими или квазигармоническими с частотой от миллигерц (1 мГц = 10-3 Гц) до петагерц (1 ПГц = 1015 Гц)) и неустановившимися, импульсными с длительностью импульсов от микросекунд до секунд. С помощью разнообразной аппаратуры измеряют амплитудные и фазовые составляющие напряженности электрических ( ) и магнитных ( ) полей. Если напряженность и структура естественных полей определяется их природой, интенсивностью, а также электромагнитными свойствами горных пород, то для искусственных полей она зависит и от мощности источника, частоты или длительности, а также способов возбуждения поля.
Основными электромагнитными свойствами горных пород являются удельное электрическое сопротивление (УЭС, или ), электрохимическая активность ( ), поляризуемость ( ), диэлектрическая ( ) и магнитная ( ) проницаемости. Электромагнитные свойства геологических сред, вмещающей среды, пластов, объектов, а также геометрические параметры последних служат основой для построения геоэлектрических разрезов. Геоэлектрический разрез над однородным по тому или иному электромагнитному свойству полупространством принято называть нормальным, а над неоднородным - аномальным. На выделении аномалий и основана электроразведка.
Изменение глубинности электроразведки достигается изменением мощности источников, частоты и длительности возбуждения, а также зависит от способов создания поля. Последние могут быть гальваническими (ток вводится в Землю с помощью заземлений) или индукционными (ток пропускается в незаземленную петлю, рамку). Глубинностью можно управлять также геометрическим (дистан-ционным) и частотным приемами. Сущность дистанционного (геометрического) приема сводится к увеличению расстояния между источником поля и точками, где оно измеряется, что ведет к росту объема среды, вовлекаемого в исследование. Частотный принцип увеличения глубинности основан на скин-эффекте, т.е. прижимании поля к поверхности Земли, тем большем, чем выше частота гармонического поля ( ) или меньше время ( ) после создания импульсного поля. Наоборот, чем меньше частота, больше (период колебаний) или (его называют временем диффузии, становления поля, или переходного процесса), тем больше глубинность разведки. В целом она может меняться от сотен и десятков километров на постоянном токе и инфранизких частотах до сантиметров и миллиметров на частотах свыше гигагерц (Ггц = 109 Гц).
Вследствие многообразия используемых полей, их частотно-временных спектров, электромагнитных свойств горных пород электроразведка отличается от других геофизических методов большим количеством методов (свыше 50). По физической природе их можно сгруппировать в методы естественного переменного электромагнитного поля, поляризационные (геоэлектрохимические), сопротивлений, индукционные низкочастотные, высокочастотные, сверхвысокочастотные, биогеофизические.
По геометрии и строению изучаемых геологических разрезов методы электроразведки условно делятся на: 1) зондирования, которые служат для расчленения горизонтально (или полого) слоистых разрезов в вертикальном направлении; 2) профилирования, предназначенные для изучения крутослоистых разрезов или выявления объектов в горизонтальном направлении; 3) подземно-скважинные (объемные), объединяющие методы выявления неоднородностей между скважинами, горными выработками и земной поверхностью.
Электроразведка с той или иной эффективностью применяется для решения практически всех задач, при которых используются геофизические методы. В частности, с помощью естественных переменных полей солнечно-космического происхождения разведываются земные недра на глубинах до 500 км и ведется изучение таких геосфер, как осадочная толща, кристаллические породы, земная кора, верхняя мантия. Электромагнитные зондирования используются при глубинных и структурных исследованиях, поисках нефти и газа. Электромагнитные профилирования применяются при картировочно-поисковых съемках, поисках рудных и нерудных полезных ископаемых. Объемные методы применяются при разведке месторождений. Малоглубинные электромагнитные зондирования и профилирования используются при инженерных и экологических исследованиях.
По технологии и месту проведения работ различают аэрокосмические, полевые (наземные), акваториальные (или аквальные, водные, морские, речные), подземные (шахтно-рудничные) и скважинные (межскважинные) методы электроразведки.
7. Основы теории электроразведки
Теория электроразведки базируется на теории электромагнитного поля. Поэтому в этом разделе даются, в основном, физико-геологические основы теории с иллюстрацией несколькими простыми физико-математическими задачами.
Искусственные переменные гармонические электромагнитные поля.
Искусственные переменные гармонические электромагнитные поля создаются с помощью разного рода генераторов синусоидального напряжения звуковой и радиоволновой частоты, подключаемых к гальваническим (заземленные линии) или индуктивным (незаземленные контуры) датчикам (источникам) поля. С помощью других заземленных (приемных) линий или незаземленных контуров измеряются соответственно электрические ( ) или магнитные ( ) составляющие напряженности поля. Они определяются прежде всего удельным электрическим сопротивлением вмещающей среды. Чем выше сопротивление, тем меньше скин-эффект и больше глубина проникновения поля. С другой стороны, чем ниже сопротивление, тем больше интенсивность вторичных вихревых электромагнитных полей, индуцированных в среде.
Вывод аналитических формул для связи между измеряемыми параметрами ( ), силой тока в датчике поля ( ), расстоянием между генераторными и измерительными линиями ( ), их размерами и электромагнитными свойствами однородного полупространства очень сложен.
На низких частотах ( кГц) расчет сопротивления однородного полупространства ведется по формуле, похожей на полученную в 3.1, , где - коэффициент установки, разный для различных способов создания и измерения поля, расстояний между источником и приемником, круговых частот ( ); - разность потенциалов, пропорциональная составляющим или . Над неоднородной средой по этой же формуле рассчитывается кажущееся сопротивление ( ).
На высоких частотах ( кГц) формулы для параметров нормального поля более громоздки, так как они зависят от трех электромагнитных свойств среды: .
7.1.5. Искусственные импульсные (неустановившиеся) электромагнитные поля.
Искусственные импульсные (неустановившиеся) электромагнитные поля создаются с помощью генераторов, дающих на выходе напряжение в виде прямоугольных импульсов разной длительности и подключаемых к заземленным или незаземленным линиям. С помощью других заземленных приемных линий или незаземленных контуров изучается процесс установления и спада разностей потенциалов или на разных временах ( ) после окончания питающего импульса.
При зондировании геологической среды такими импульсами в ней происходят разнообразные физические процессы. В зависимости от способа создания и измерения поля и времени, на котором проводятся измерения, а также электромагнитных свойств горных пород различают неустановившиеся поля двоякой природы: вызванной поляризации и переходных процессов или становления поля.
1 . Поля вызванной поляризации. Поля вызванной поляризации, или вызванные потенциалы (ВП), создаются путем гальванического возбуждения постоянного тока с помощью линии АВ и измерения разности потенциалов ВП на приемных электродах МN ( ) через 0,5-1 с после отключения тока, т.е. измеряется спад напряженности электрического поля, обусловленный разной вызванной поляризуемостью горных пород ( ).
Над однородным полупространством , где - разность потенциалов на тех же приемных электродах во время пропускания тока. Над неоднородным полупространством рассчитанная по этой формуле величина называется кажущейся поляризуемостью ( ).
Интенсивные поля ВП создаются над средами, содержащими рудные (электронопроводящие) минералы. При пропускании тока через такую среду в ней происходят электрохимические процессы, сходные с теми, которые наблюдаются при зарядке аккумулятора. Во время пропускания тока на поверхности рудных минералов, окруженных подземной водой, осуществляется ряд физических превращений и химических реакций, приводящих к вынужденной поляризации среды. После отключения тока в среде начинает устанавливаться равновесие, проявляющееся в медленном спаде электрического поля и наличии на приемных электродах потенциалов в течение нескольких секунд.
В средах, где породообразующие минералы не проводят электрический ток, (ионопроводящие) образование полей ВП связано с перераспределением зарядов на контакте жидкой и твердой фаз, диффузией ионов через пористые среды, адсорбцией их на глинистых частицах и другими процессами.
2 . Поля переходных процессов или становления поля. При импульсном или ступенчатом изменении тока в питающей линии ( АВ) или незаземленном контуре (петля, рамка) в момент включения или выключения тока в проводящей геологической среде индуцируются вихревые вторичные электромагнитные поля. Из теории спектров и импульсной техники известно, что при резком изменении тока в среде возникает сигнал, который можно разложить в набор гармонических колебаний широкого спектра частот. Чем острее импульс или крутизна спада сигнала, тем более высокочастотные колебания содержатся в нем. С увеличением частоты растет скин-эффект (а значит, уменьшается глубина проникновения поля) и увеличиваются вторичные вихревые индукционные поля. Поэтому в зависимости от формы питающего импульса и сопротивления среды сигналы в ней по-разному искажаются. Изучая с помощью приемной линии (М N) или незаземленного контура (петли, рамки) разности потенциалов и на разных временах ( ) после окончания питающего сигнала, можно получить форму искаженного средой сигнала, т.е. изучить переходные процессы или становление (установление) поля в среде.
Вывод аналитических формул для связи разностей потенциалов ( ) от силы тока в питающей цепи ( ), сопротивления однородного полупространства ( ), расстояния ( ) между центрами питающего и приемного устройств и их размеров сложен. Лишь для дальней ( ) или ближней ( ) зон от источника, где - проектируемые глубины разведки, формулы для расчета имеют несложный вид:
или , | (3.3) |
где и - коэффициенты установок, разные для дальней и ближней зон от источника, зависящие от типа питающей и приемной линий, их размеров и разноса ( ). Для неоднородной среды сопротивления, рассчитанные по этим формулам, называются кажущимися ( ).
7.1.6. Сверхвысокочастотные поля.
Сверхвысокочастотные электромагнитные поля с длиной волны от микрометров до метров используются для пассивной и активной радиолокации земной поверхности. Методы, основанные на их измерении, находятся на стыке электроразведки и терморазведки. При пассивной радиолокации изучаются естественно-техногенные радиотепловые (РТ) или инфракрасные (ИК) излучения земной поверхности. В разных диапазонах микрометровых длин электромагнитных волн существуют "окна прозрачности", позволяющие получать РТ или ИК - изображения земных ландшафтов при любой погоде и облачности. Интенсивность излучений зависит от солнечного и внутриземного нагрева верхних частей поверхности Земли, а также от искусcтвенных источников тепла (города, промышленные предприятия и т.п.).
При активной радиолокации (аэрокосмической или полевой) земная поверхность облучается искусственными короткими радиолокационными импульсами, изучаются времена прихода и форма отраженных как от земной поверхности, так и от границ слоев с разными электромагнитными свойствами (в основном и ).
7.1.7. Биогеофизические поля.
К биогеофизическим полям относим поля, создающие так называемый биолокационный эффект (БЛЭ), т.е. вращение или отклонение рамок тех или иных конструкций в руках операторов над природными или техногенными объектами. Имеется ряд гипотез, свидетельствующих об электромагнитной природе информации о неоднородности вещественного и энергетического строения среды, поэтому мы отнесли их к электроразведке. Способность некоторых людей ("лозоходцев") выявлять те или иные объекты - например, такие геологические, как рудные скопления, тектонические нарушения, контакты пород, водонасыщенные или карстовые зоны, известны человечеству более 4000 лет. Основанный на БЛЭ биолокационный метод (БЛМ) используется и сейчас для выявления перечисленных выше объектов, а также и геопатогенных зон (участков земной поверхности или помещений, где у людей наблюдаются повышенная заболеваемость или функциональные расстройства), и искусственных объектов (трубопроводы, кабели, подземные выработки, археологические захоронения и др.). Если наличие БЛЭ и способность некоторых людей практически использовать БЛМ не вызывает сомнений, то теоретического объяснения этого феномена нет. БЛЭ является малопонятным энергоинформационным взаимодействием живой и неживой природы. Подсознательное восприятие оператором сигналов, раздражителей, приносимых информацией о нарушениях однородности среды, проявляется моторномышечной реакцией организма, которая и приводит к отклонению или вращению рамки-индикатора.
Способности быть такими операторами у людей редки. Однако их можно воспитать, т.е. можно обучиться "лозоходству".
7.2. Электромагнитные свойства горных пород
Как отмечалось выше, к основным электромагнитным свойствам горных пород относятся: удельное электрическое сопротивление ( ), электрохимическая активность ( ), поляризуемость ( ), диэлектрическая ( ) и магнитная ( ) проницаемости. Параметрами , а также частотой поля определяется коэффициент поглощения поля средой.
.2.1. Удельное электрическое сопротивление
горных пород. }Удельное электрическое сопротивление (УЭС), измеряемое в омметрах (Омм), характеризует способность пород оказывать электрическое сопротивление прохождению тока и является наиболее универсальным электромагнитным свойством. Оно меняется в горных породах и рудах в очень широких пределах: от 10-3 до 1015 Омм. Величина обратная называется электропроводностью и измеряется в сименсах на метр (См / м). Для наиболее распространенных осадочных, изверженных и метаморфических горных пород УЭС зависит от минерального состава, физико-механических и водных свойств горных пород, концентрации солей в подземных водах и в меньшей мере от их химического состава, а также от некоторых других факторов (температуры, глубины залегания, степени метаморфизма и др.).
1. Удельное электрическое сопротивление минералов зависит от их внутрикристаллических связей. Для минералов-диэлектриков (кварц, слюды, полевые шпаты и др.) с преимущественно ковалентными связями характерны очень высокие сопротивления (1012 - 1015 Омм). Минералы-полупроводники (карбонаты, сульфаты, галоиды и др.) имеют ионные связи и отличаются высокими сопротивлениями (104 - 108 Омм). Глинистые минералы (гидрослюды, монтморилломонит, каолинит и др.) обладают ионно-ковалентными связями и выделяются достаточно низкими сопротивлениями ( Омм). Рудные минералы (самородные, некоторые окислы) отличаются электронной проводимостью и очень хорошо проводят ток ( Омм). Первые две группы минералов составляют "жесткий" скелет большинства горных пород. Глинистые минералы создают "пластичный" скелет, способный адсорбировать связанную воду, а породы с "жесткими" минералами могут насыщаться лишь растворами и свободной водой, т.е. той, которая может быть выкачана из породы.
2. Удельное электрическое сопротивление свободных подземных вод (грави-тационных и капиллярных) меняется от долей Омм при высокой общей минерализации ( г / л) до 1000 Омм при низкой минерализации ( г / л) и может быть оценено по формуле . Химический состав растворенных в воде солей не играет существенной роли, поэтому по данным электроразведки можно судить лишь об общей минерализации подземных вод. Удельное электрическое сопротивление связанных вод, адсорбированных твердыми частицами породы, низкое и мало меняется (от 1 до 100 Омм). Это объясняется достаточно постоянной их минерализацией (3-1 г / л). Средняя минерализация вод мирового океана равна 36 г / л.
3. Так как поровая вода (свободная и связанная) отличается значительно более низким удельным электрическим сопротивлением, чем минеральный скелет большинства минералов, то сопротивление горных пород практически не зависит от его минерального состава, а определяется такими параметрами пород, как пористость, трещиноватость, водонасыщенность. С их увеличением сопротивление пород уменьшается за счет увеличения ионов в подземной воде. Поэтому электропроводность большинства пород является ионной (электролитической).
4. С ростом температуры на 40 сопротивление уменьшается примерно в 2 раза, что объясняется увеличением подвижности ионов. При замерзании сопротивление горных пород возрастает скачком, так как свободная вода становится практически изолятором, а электропроводность определяется лишь связанной водой, которая замерзает при очень низких температурах (ниже -50 С). Возрастание сопротивлений при замерзании разных пород различно: в несколько раз оно увеличивается у глин, до 10 раз - у скальных пород, до 100 раз - у суглинков и супесей и до 1000 и более раз - у песков и грубообломочных пород.
5. Глубина залегания, степень метаморфизма, структура и текстура породы также влияют на ее сопротивление, изменяя коэффициент микроанизотропии, за который принято брать , где и - сопротивления породы вкрест и вдоль слоистости. Чаще всего \lambda меняется от 1 до 1,5, достигая 2-3 у сильно рассланцованных пород. Величина \lambda может достигать нескольких единиц для мерзлых пород разной криогенной структуры и льдовыделения.
6. Несмотря на зависимость от множества факторов и широкий диапазон изменения у разных пород, основные закономерности УЭС установлены достаточно четко. Изверженные и метаморфические породы характеризуются высокими сопротивлениями (от 500 до 10000 Омм). Среди осадочных пород высокие сопротивления (100 - 1000 Омм) у каменной соли, гипcов, известняков, песчаников и некoторых других. Обломочные осадочные породы, как правило, имеют тем большее сопротивление, чем больше размер зерен, составляющих породу, т.е. зависят прежде всего от глинистости. При переходе от глин к суглинкам, супесям и пескам удельное сопротивление изменяется от долей и первых единиц омметров к первым десяткам и сотням oмметров.
7.2.2. Электрохимическая активность и поляризуемость горных пород.
1. Под электрохимической активностью понимается свойство пород создавать естественные постоянные электрические поля (см. 7.1.2.). За электрохимическую активность ( ) условно принимается коэффициент пропорциональности между потенциалом ( ) или напряженностью естественного электрического поля ( , где - разность потенциалов в двух точках измерения М и N) и основными потенциал-образующими факторами, которыми они обусловлены. Такими факторами являются (см. 7.1.2): концентрация кислорода, водородный показатель кислотности подземных вод, отношение концентрации подземных вод, давление и др. Коэффициент измеряется в милливольтах и меняется от -(10-15) мВ у чистых песков, близко к нулю у скальных пород, возрастает до +(20-40 мВ) у глин и до сотен милливольт для руд с электронопроводящими минералами (сульфиды, графит, антрацит). В целом зависит от многих природных факторов (минерального состава, глинистости, пористости, проницаемости, влажности, минерализации подземных вод и др.).
2. Способность пород поляризоваться, т.е. накапливать заряд при пропускании тока, а затем разряжаться после отключения этого тока оценивается коэффициентом поляризуемости ("эта"). Величина вычисляется в процентах как отношение напряжения, которое остается в измерительной линии МN по истечении определенного времени (обычно 0,5-1 с) после размывания токовой цепи ( ) к напряжению в той же линии при пропускании тока ), т.е.
(3.4) |
Поляризация - это сложный электрохимический процесс, протекающий при пропускании через породу постоянного или низкочастотного переменного (до 10 Гц) тока. Наибольшей поляризуемостью ( ) отличаются руды с электронной проводимостью (сульфиды, сульфосоли, некоторые самородные металлы, отдельные окислы, графит, антрацит). Природа этих потенциалов ВП связана с так называемой концентрационной и электродной поляризацией рудных минералов. Коэффициенты поляризуемости до 2-6% наблюдаются над обводненными рыхлыми осадочными породами, в которых имеются глинистые частицы. Поляризуемость их обусловлена деформациями внешних обкладок двойных электрических слоев, возникающих на контакте твердой и жидкой фазы. Большинство изверженных, метаморфических и осадочных пород, насыщенных минеральной водой, слабо поляризуются ( ).
7.2.3. Диэлектрическая и магнитная проницаемости.
Диэлектрическая ( ) и магнитная ( ) проницаемости играют значительную роль лишь при электроразведке на высоких частотах. Относительная диэлектрическая проницаемость (где и } - диэлектрические проницаемости породы и воздуха) показывает, во сколько раз увеличивается емкость конденсатора, если вместо воздуха в него поместить данную породу. Величина меняется от нескольких единиц (у сухих осадочных пород) до 80 (у воды) и зависит, в основном, от процентного содержания воды и от минералогического состава породы. У изверженных пород \epsilon меняется от 5 до 12 единиц, у осадочных - от 2-3 (у сухой) до 16-40 (у полностью насыщенной водой породы).
Как отмечалось выше, магнитная проницаемость громадного большинства пород равна магнитной проницаемости воздуха. Лишь у ферромагнетиков относительная магнитная проницаемость может возрастать до 10 единиц (см. 4.2).
Дата добавления: 2021-05-28; просмотров: 421;