Производство электроэнергии на ТЭС. Теплоэлектроцентрали. Атомные электрические станции


 

Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем назва­нии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:

ТЭС – тепловая электрическая станция преобразует тепловую энергию в электрическую;

ГЭС – гидроэлектростанция преобразует механическую энер­гию движения воды в электрическую;

ГАЭС – гидроаккумулирующая станция преобразует механи­ческую энергию движения предварительно накопленной в искус­ственном водоеме воды в электрическую;

АЭС – атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;

ПЭС – приливная электростанция преобразует энергию при­ливов в электрическую, и т. д.

В Республике Беларусь более 95% энергии вырабатывается на ТЭС. По назначению тепловые электро­станции (ТЭС) делятся на два типа:

КЭС – конденсационные тепловые электростанции, предназ­наченные для выработки только электрической энергии;

ТЭЦ – теплоэлектроцентрали, на которых осуществляется со­вместное производство электрической и тепловой энергии [12].

На рис. 1. представлена тепловая схема ТЭС. Ее основное обору­дование состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется теп­ловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превраща­ется в механическую энергию вращения. Гене­ратор Г превращает энер­гию вращения в электри­ческую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины либо котла. На рис. 1. кроме основного оборудования ТЭС показаны конден­сатор пара К, в котором отработанный пар, отдавая скрытую теплоту парообразования охлаждающей его воде, с помощью циркуляционного насоса Н в виде конденсата вновь подается в котел-парогенератор. Схе­ма ТЭЦ отличается тем, что взамен конденсатора устанавливается теп­лообменник, где пар при значительном давлении нагревает воду, пода­ваемую в главные тепловые магистрали. Технология преобразований энергии на ТЭС может быть представ­лена в виде цепи следующих превращений:

 

Рис. 1. Тепловая схема ТЭС

 

Топливо и окислитель, которым обычно служит воздух, непрерывно поступает в топку котла. В качестве топлива чаще всего используются уголь, сланцы, природный газ и мазут (продукт переработки нефти – остаток пос­ле отгонки из нефти бензина, керосина и других легких фракций). Однако использование природного газа и особенно мазута в перспективе должно сокращаться, так как это слишком ценные вещества, чтобы их использо­вать в качестве котельного топлива. За счет тепла, образующегося в резуль­тате сжигания топлива, в паровом котле вода превращается в пар с температурой около 550°С. КПД ТЭС – это отношение полученной электрической энергии к тепловой энергии, образовавшейся при сжигании топлива; он растет при повышении начальной температуры пара. Но при этом для наиболее ответственных деталей установки, испытывающих боль­шие механические нагрузки в сочетании с высокой температурой, прихо­дится применять высококачественные, дорогие стали. Выигрыш в КПД не компенсирует повышенных затрат на металл. В турбине способ преобразования тепловой энергии пара в меха­ническую энергию состоит в следующем. Пар высокого давления и тем­пературы, имеющий большую тепловую энергию, из котла поступает в сопла турбины. Сопла – это неподвижно укрепленные, не вращающие­ся вместе с валом турбины, сделанные из металла каналы, в которых температура и давление пара уменьшаются, а значит, уменьшается и его тепловая энергия, но зато увеличивается скорость движения потока пара. Таким образом, за счет уменьшения тепловой энергии пара возра­стает его механическая (кинетическая) энергия. При этом механическая энергия потока пара превращается в механическую энергию ротора турбины, а точнее – в механическую энергию турбогенератора, так как валы турбины и элек­трического генератора соединены между собой. Современные паровые турбины для ТЭС – весьма совершенные, быстроходные, высокоэкономичные машины. Количество охлаждающей воды должно быть в несколько десятков раз больше, чем количество конденсируемого пара. Поэтому ТЭС стро­ят поблизости от крупных водных источников. Процесс производства электроэнергии на ТЭС условно можно раз­делить на три цикла: химический – горение, в результате которого внутренняя хи­мическая энергия топлива превращается в тепловую и переда­ется пару; механический – тепловая энергия пара превращается в энергию вращения турбины и ротора турбогенератора; электрический – механическая энергия превращается в элект­рическую [15].

Предприятиями, на которых производится тепловая и электрическая энергии, являются: ТЭС на углеводородном топливе, ТЭЦ производит электрическую и тепловую энергию, АЭС использует энергию ядерного распада. ТЭС включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Поступающее со склада в парогенератор топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора воду, преобразует ее в энергию водяного пара с температурой 550˚С. В турбине энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор, который превращает ее в электрическую. В конденсаторе пара отработанный пар с температурой 123-125˚С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса в виде конденсата вновь подается в котел-парогенератор. На ТЭС могут использоваться газотур­бинные установки (ГТУ). Широкое распространение газовые турбины получили на транспорте в качестве основных элементов авиационных двигателей, на железнодорожном транспорте – газотурболокомотивы.

В ГТУ в качестве рабочего тела служит смесь продуктов сго­рания топлива с воздухом или нагретый воздух при большом дав­лении и высокой температуре. По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутрен­него сгорания, а при очень высоких температурах рабочего тела их экономичность выше. Газовые турбины более компактны, чем паро­вые турбины и двигатели внутреннего сгорания аналогичной мощно­сти. Важнейшим преимуществом газовой турбины является ее высокая маневренность: время запуска составляет 1–1,5 мин. ТЭС с газотурбинными установками более маневренна, чем паротурбинная, легко пускается, останавливается, регулируется. Недостаток ГТУ заключается в том, что газовые турбины работают, в основном, на жидком высокосортном топливе или на газообразном (природный газ; искусственный газ, по­лучаемый при особом сжигании твердых топлив). Тем не менее, ана­литические исследования перспективных направлений развития ми­ровой энергетики называют ГТУ в числе наиболее прогрессивных преобразователей энергии XXI века. На рис. 2. представлена принципиальная схема ТЭС с газотурбин­ной установкой.

 

Рис. 2. Схема ТЭС с газотурбинной установкой (ГТУ)

В камеру сгорания 1 подается жидкое или газообраз­ное топливо и воздух. Образующиеся в ней газы 2 высокого давления при температуре 750-770°С направляются на рабочие лопатки турби­ны 3. Турбина 3 вращает электрический генератор 4, вырабатывающий электрическую энергию, и компрессор 5, служащий для подачи под дав­лением воздуха 6 в камеру сгорания. Сжатый в компрессоре 5 воздух 6 перед подачей в камеру сгорания 1 подогревается в регенераторе 7 от­работанными в турбине горючими газами 8. Подогрев воздуха позволя­ет повысить эффективность сжигания топлива в камере сгорания. Для повышения экономической эффективности использования ГТУ на ТЭС применяют парогазовые установки – совмещение газотур­бинных и паротурбинных агрегатов. Они являются высокоманеврен­ными и служат для покрытия пиковых нагрузок в энергосистеме. Принципиальная схема ТЭС с парога­зовой установкой приведена на рис. 3. На ней обозначены: 1– паро­генератор, 2 – компрессор, 3 – газовая турбина, 4 – генератор, 5 – паровая турбина, 6 – конденсатор, 7 – насос, 8 – экономайзер. Экономайзер по­зволяет отработанные в турбине газы использовать для подогрева пита­тельной воды, что дает возможность уменьшить расход топлива и по­высить КПД до 44%.

 

 

Рис. 3. Схема ТЭС с парогазовой установкой

На рис. 4. представлена еще одна возможная схема ТЭС с парогазовой установкой – с выбросом отработанных газов в паровой котел. Здесь 8 – камера сгорания.

 

 

Рис. 4. Схема ТЭС с парогазовой установкой с выбросом отработанных газов в паровой котел

 

Теплоэлектроцентрали (ТЭЦ), где осуществляется комплексная вы­работка электрической и тепловой энергии, обладают КПД в 1,5-1,7 раз выше, достигающим 60-65%. Комплексная выработка электро­энергии и тепла очень выгодна. Многим отраслям промышленности: химической, металлургичес­кой, текстильной, пищевой и др. тепло необходимо для технологичес­ких целей. Примерно 50% добываемого топлива расходуется на тепло­вые нужды предприятий. Отработанный в турбинах КЭС пар имеет температуру 25-30°С и давление около 0,04 бара (0,04-10~7МПа) и не­пригоден для использования в технологических целях на предприяти­ях. Тре­буется горячая вода и для отопления жилых зданий. Тепловая энергия в виде пара указанных параметров и горячей воды может производиться централизованно на ТЭЦ и в крупных ко­тельных или децентрализованно на заводских мини-ТЭЦ и в индиви­дуальных котельных. На ТЭЦ для получения пара с необходимыми потребителю парамет­рами используют специальные турбины с промежуточными отборами пара. В них, после того как часть энергии пара израсходуется на приведе­ние в движение турбины и параметры его понизятся, производится отбор некоторой доли пара для потребителей. Оставшаяся доля пара обычным способом используется в турбине для приведения ее во вращение и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывается меньшим, то несколько возрастает расход топлива на выра­ботку электроэнергии. Однако это увеличение в конечном счете меньше по сравнению с расходом топлива в случае раздельной выработки элект­рической энергии и тепла на небольших котельных. При сжигании топ­лива только для получения тепла, например для отопления, весь «темпе­ратурный напор» примерно от 1500°С до 100°С, т.е. от температуры, получаемой при сжигании топлива, до температуры, нужной для отопле­ния, никак не используется. Выгоднее использовать этот температурный интервал больше 1000°С для получения из тепловой энергии механичес­кой, а тепло (около 100°С) направить на отопление. Конечно, в этом слу­чае механической энергии при том же количестве сжигаемого топлива получится меньше за счет повышения конечной температуры примерно на 70°С (с 30 до 100°С). Такое повышение необходимо для обеспечения температуры воды на нужды отопления. Горячая вода и пар под давлени­ем до 3 МПа доставляются потребителям по трубопроводам. Совокуп­ность трубопроводов для передачи тепла называется тепловой сетью. Передача тепла в виде пара неэкономична на расстояние более 5–7 км [15].

Централизованное теплоснабжение на базе комплексной выработ­ки тепловой и электрической энергии обеспечивает в настоящее время основную долю потребности в тепле промышленного и жилищно-ком­мунального хозяйства, уменьшает расход топливно-энергетических ре­сурсов, а также материальных и трудовых затрат в системах теплоснаб­жения, имеет экологические преимущества. Однако при максимальной централизации теплоснабжения на ТЭЦ можно выработать только 25-30% требуемой электрической энер­гии. Работа же конденсационных станций определяется условиями вы­работки электроэнергии, которую технологически и экономически возможно передавать на значительные расстояния. Это делает благо­приятным концентрацию больших электрических мощностей и позво­ляет быстро наращивать электроэнергетический потенциал страны. Поэтому в национальной энергетической системе необходимо и целе­сообразно сочетание КЭС и ТЭЦ.

В качестве весьма энергоэффективного решения снабжения крупных производств элект­роэнергией и теплом рассматриваются мини-ТЭЦ. Атомная электростанция (АЭС) по своей сути также является теп­ловой электростанцией. Однако вместо котла, где сжигается органическое топливо, использует­ся ядерный реактор. Внутриядерная энергия превращается в тепловую энергию пара, которая затем – в механическую энергию вращения тур­богенератора и в электрическую энергию. Наличие термодинамическо­го цикла на АЭС ограничивает КПД этой станции, как и обычных теп­ловых станций. Недостаток АЭС заключается также в отсутствии маневренности: пуск и останов блоков и агрегатов этих станций требу­ет значительных затрат времени и труда.

 

 



Дата добавления: 2017-01-08; просмотров: 6651;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.