Последовательность независимых, однородных испытаний. Схема Бернулли
- Формула Бернулли
Рассмотрим стохастический эксперимент, который, в свою очередь, является последовательностью n независимых и однородных (одинаковых) испытаний, в результате каждого из которых может произойти событие A или ему противоположное с вероятностями p и q = 1 – p, соответственно схема Бернулли. По условию, результат любого испытания не зависит от его порядкового номера и от того, что произошло до него. Простейшим примером может служить многократное бросание монеты, когда с вероятностью p = 0,5 выпадает герб (событие A) и с вероятностью q = 0,5 – решка ( ).
Найдём вероятность pn(m) события Bn(m), заключающегося в том, что в результате событие A появится ровно m раз. Очевидно, интересующее нас событие появится тогда, когда появится одно из следующих событий:
.
Здесь выписаны все комбинации из n сомножителей, из которых m множителей вида A и (n - m) - вида , нижний индекс указывает на порядковый номер испытания. Поскольку Bn(m) произойдёт тогда, когда произойдёт или первая, или вторая, ... , или последняя комбинация, то
.
В этой сумме имеется всего (или ) слагаемых. Действительно, для m элементов типа (или n – m элементов типа ) можно выбрать адреса на n позициях n×(n–1)×…×(n–m+1) разными способами. Так как элементы между собой не различаются, то комбинаций на самом деле во столько раз меньше, сколькими способами можно перемешать m элементов между собой, а этих способов m×(m–1)×…×1. Поскольку все слагаемые в этой сумме попарно несовместны, а множители в каждом слагаемом независимы, то искомая вероятность будет равна сумме одинаковых слагаемых, каждое из которых содержит m множителей p(A) = p и n - m множителей p( ) = q. Учитывая, что всего слагаемых , в итоге получим формулу Бернулли
. (1.16)
При выводе этой формулы мы попутно показали, что
.
Рассмотрим бином Ньютона
. (1.17)
Очевидно, pn(m) равна соответствующему слагаемому в разложении бинома (здесь для общности мы будем полагать и 0! равными единице). Учитывая, что (q + p)n=1, получим
. (1.18)
Вероятность события, заключающегося в том, что при n испытаниях A появится не менее m1раз и не более m2, вычисляется по формуле
. (1.19)
Пример.Вероятность заболевания гриппом во время эпидемии равна 0,4. Найти вероятность того, что из шести сотрудников фирмы заболеет ровно четыре: “заболеет не более четырех” (последнее часто формулируется как “хотя бы (или по крайней мере) две не заболеют”).
Решение. Очевидно, имеет место схема Бернулли, где p = 0,4, q = 1 - p = 0,6, n = 6, m = 4 (m £ 4), поэтому
.
На второй вопрос можно найти ответ двумя способами, используя теорему о вероятности противоположного события:
.
Во втором случае вычисления проще, и эту возможность полезно учитывать при решении задач.
- Асимптотические формулы. Формула Пуассона
Применение формулы Бернулли при больших значениях n приводит к произведению очень больших (n!) и очень малых чисел (pmи qn - m), что плохо с вычислительной точки зрения, поэтому приходится пользоваться приближенными, асимптотическимиформулами.
При достаточно большом n и малом p (например, n > 100 и a = np < 10) хорошее приближение для формулы Бернулли дает формула
. (1.20)
В частности, pa(0)=e-a, pa(1)=ae-a,
Эта формула задает распределение вероятностей для пуассоновской величины xс параметром a, принимающей целые значения m = 0,1,2,.. с вероятностями . Это распределение имеет самостоятельное значение и ниже мы еще к нему вернемся.
Вероятность события, заключающегося в том, что А появится не более k раз, вычисляется по формуле
. (1.21)
Проведение расчётов облегчается тем, что обе формулы табулированы (таблицы 1 и 2 приложения).
Пример. Известно, при транспортировке и разгрузке керамической отделочной плитки повреждается 2,5%. Найти вероятность того, что в партии из 200 плиток повреждёнными окажется: a) ровно 4; b) не более 6.
Решение. Поскольку вероятность p = 0,025 повреждения плитки мала, n = 200 - велико и
a = np = 5 < 10, можно воспользоваться формулами Пуассона (1.20) и (1.21), применяя Таблицы 1 и 2:
- Локальная и интегральная формулы Муавра - Лапласа
При достаточно большом n и не слишком малых p и q формула Пуассона уже даёт значительную погрешность и применяется другое приближение - формула Муавра - Лапласа, которую можно получить из формулы Бернулли, совершая предельный переход и применяя формулу Стирлинга для вычисления n!.
, где и . (1.22)
Эта формула также табулирована (таблица 3 приложения), причём, в силу чётности функции , таблица её значений составлена для x ³ 0.
Если при сохранении условий предыдущего пункта нас интересует вероятность того, что при n испытаниях событие A появится не менее m1и не более m2раз, то формула (19) с учётом предельного перехода превращается в интегральную формулу Муавра - Лапласа
, (1.23)
где и сумма (1.19) превращается в интеграл .Интеграл называется функцией Лапласа и представляет собой не выражающийся через элементарные функции интеграл. Поскольку функция Лапласа нечетная ( ) и быстро приближается к своему асимптотическому значению 0,5, то таблица её значений (таблица 4 приложения) составлена для 0 £ x < 5. Для больших значений аргумента с большой точностью можно взять 0,5.
Пример. Вероятность того, что зашедший в ресторан посетитель сделает заказ, равна 0,8. Определить вероятность того, что из 100 зашедших не менее 75 сделают заказ.
Решение. Поскольку n = 100 велико, p = 0,8 и q = 0,2 не малы, применяем интегральную формулу Муавра-Лапласа
.
Пример. Известно, что 30% призывников имеют 27 размер обуви. Сколько пар обуви надо иметь на складе воинской части, чтобы с вероятностью po= 0,9 были обеспечены все такие призывники, если в часть прибыло 200 новобранцев?
Решение. Очевидно, имеет место схема Бернулли: подбор пары обуви каждому призывнику - одно из 200 испытаний, причём, вероятность того, что ему требуется обувь 27 размера, p = 0,3 (q = 0,7). Пусть на складе имеется k пар обуви, где k пока неизвестно. Требуется подобрать такое k, чтобы . Поскольку n = 200 велико, а p и q не малы, применяем интегральную формулу Муавра-Лапласа
.
Отсюда надо решить неравенство . В таблице 4 находим, что F(x)>0,4 при x>1,28, следовательно, (k-60)/6,48>1,28 и k>68,284. То есть на складе достаточно иметь 69 пар обуви такого размера, чтобы с вероятностью 0,9 обеспечить спрос.
- Распределение Пуассона
Случайная величина, которая принимает значение m с вероятностью ,
где m = 0,1,2,…, а l - положительная постоянная величина, называется распределенной по Пуассону с параметромl. Закон распределения Пуассона иногда называют законом редких событий (вспомним, что это распределение соответствует схеме Бернулли с маленьким p). Типичная схема, приводящая к закону Пуассона, такова: произойдет или нет событие в интервале времени (t,t+Dt), не зависит от событий, предшествующих моменту t; вероятность отдельного события за малый промежуток времени пропорциональна длине этого промежутка (~lDt); вероятность двух или большего числа событий за малый промежуток времени пренебрежительно мала по сравнению с вероятностью одного события. Эти условия выполняются в большом числе жизненных ситуаций. Примерами пуассоновской величины служит число новорожденных в сутки, число аварий и т.д. Оно широко применяется в теории надежности, в теории массового обслуживания, для него составлены таблицы вероятностей pmв зависимости от l. Очень важным свойством закона Пуассона и его параметра l является “воспроизводимость”: сумма двух случайных величин, распределенных по Пуассону с параметрами l1и l2, распределена также по Пуассону с параметром l1+l2; параметр l случайных событий, протекающих во времени и распределенных по Пуассону, пропорционален времени (l - это среднее число событий, наступающих в некоторую единицу времени; роль времени может играть и пространство – например, когда рассматривается число столкновений при полете частиц в пространстве). Это позволяет решать такого рода задачи: известно, что в среднем за год на перекрестке происходит 2 столкновения (число столкновений за год – случайная величина, распределенная по Пуассону с параметром l = 2). Число столкновений за 5 лет распределено по Пуассону с параметром l = 2 × 5 = 10. Или, наоборот, число заявок в месяц распределено по Пуассону, среднее число заявок в месяц – 90, число заявок в день распределено по Пуассону с параметром l = 90/30 = 3.
Ниже приводятся точные рассуждения на эту тему (можно, не изучая точных рассуждений, просто рассмотреть, как решаются подобные задачи).
- Простейший стационарный (пуассоновский) поток событий
Рассмотрим следующую задачу. Пусть на прямой распределены точки таким образом, что справедливы следующие предположения.
1. На единицу длины в среднем приходится m точек. Последнее не следует понимать так, что на любой единичный отрезок приходится ровно m точек, но если взять достаточно большой по длине отрезок L >> 1 и разделить число точек n, оказавшихся на нём, на его длину, то отношение при неограниченном увеличении L будет как угодно мало отличаться от m, то есть m играет роль средней плотности.
2. Вероятность расположения того или иного числа точек на отрезке длиной l зависит только от его длины и не зависит от его расположения на прямой.
3. Точки распределяются на прямой независимо друг от друга.
Нас интересует случайная величина число точек, попадающих на отрезок длины . Определим теперь вероятность того, что ровно m точек окажется на отрезке длиной . Для этого введём в рассмотрение отрезок длины L, целиком содержащий в себе предыдущий, причём L >> 1. Согласно принятым допущениям на отрезке L расположено точек, причём, каждая из них может оказаться в любом месте отрезка L, и все эти положения равновозможны. Вероятность того, что одна из этих точек окажется на отрезке согласно справедливой в этом случае геометрической схеме равна и не зависит от того, какая это точка: первая, вторая, ... .
В результате мы пришли к схеме Бернулли (производится n испытаний, в каждом из которых мы следим за одной точкой, и любая из них с вероятностью p может оказаться на отрезке l). Поэтому вероятность того, что ровно m точек из n окажется на отрезке , определяется по формуле Бернулли , где . При неограниченном увеличении L (длины отрезка) n стремится к бесконечности, а p - к нулю, но при этом величина остаётся постоянной. Следовательно, можно применять формулу Пуассона, которая в данном случае является точной, а не асимптотической:
. (1.24)
Распределение величины x, определяемое формулой (1.24), называется законом Пуассона.
Если нас интересует вероятность того, что на отрезке l окажется не менее k точек, то применяется формула
(1.25)
Разумеется, вместо отрезка на прямой можно рассматривать плоскость и некоторую её область, трёхмерный случай или, вообще, случай любого числа измерений, а также временной отрезок. В каждом из этих случаев a - среднее число элементов, приходящихся на рассматриваемую область.
Напомним, что формулы (1.24) и (1.25) табулированы (см. таблицы 1,2 приложения).
Пример. Известно, что в среднем за месяц (30 суток) в районной сети водоснабжения возникает 90 ситуаций, требующих оперативного вмешательства аварийной службы. Найти вероятность того, что за одни сутки произойдёт ровно 2 аварии. На сколько вызовов в сутки должна быть рассчитана аварийная служба, чтобы с вероятностью po= 0,9 она могла удовлетворить все поступившие за это время заявки?
Решение. Поскольку поток заявок представляет собой простейший, стационарный (пуассоновский) поток событий, то применима формула Пуассона (1.24), где ожидаемое в среднем число заявок в сутки равно ; .
Для ответа на второй вопрос задачи предположим, что аварийная служба рассчитана на удовлетворение k заявок в сутки, где k пока неизвестно. Неизвестное k определим из условия , которое принимает вид
Для определения k пользуемся таблицей 2 значений функции (1.25) при a = 3, подбирая k таким образом, чтобы p(m £ k) оказалась не меньше po= 0,9. Найденное таким образом число k = 5, то есть аварийная служба должна быть рассчитана на 5 заявок в сутки.
<== предыдущая лекция | | | следующая лекция ==> |
Вероятность противоположного события | | | Распределения случайных величин |
Дата добавления: 2017-01-08; просмотров: 2482;