Влияние обледенения на летные характеристики и безопасность полетов ЛА


Обычно обледенению подвержены следующие поверхности агрегатов ЛА:

- передние кромки крыла и оперения;

- входные кромки воздухозаборников двигателей;

- ВНА компрессора двигателя или при его отсутствии первые ступени компрессора;

- лопасти и обтекатели воздушных винтов турбовинтовых или винто-вентиляторных двигателей;

- лопасти несущих и рулевых винтов вертолетов;

- остекление кабины экипажа;

- обтекатели радиолокационных и радиосвязных антенн;

- датчики пилотажно-навигационных приборов, выходящие в поток.

Обледенение крыла и оперения оказывает большое влияние на летные характеристики, устойчивость и управляемость самолета. Искажение формы и появление неровностей и шероховатости на поверхности носовой части профиля существенно влияют на подъемную силу и сопротивление крыла. В общем приросте сопротивления самолета при обледенении доля крыла и оперения составляет до 70...80%.

В случае обледенения возрастает не только сопротивление ЛА и снижается его качество, но и существенно уменьшается величина максимального коэффициента подъемной силы Су maх (рис. 7.3 и 7.4). Величина критического угла атаки уменьшается на (6...8)°. Это приводит к срыву потока на несущей поверхности и снижению максимальное значение коэффициента подъемной силы в 1,5... 1,8 раза.

   
Рис. 7.3. Изменение поляры профиля при обледенении Рис. 7.4. Зависимость критического угла атаки от характера обледенения

Это означает, что посадка самолета, во избежание резкой потери высоты, должна производиться на меньших посадочных углах, т. е. при большей скорости.

Уменьшение толщины профиля и заострение его передней кромки увеличивают чувствительность профиля к обледенению, т. е вызывают срыв потока на меньшем угле атаки. Поэтому на малых скоростях полета реактивные сверхзвуковые самолеты при обледенении будут находиться в несравненно худших условиях, чем самолеты с дозвуковыми скоростями полета.

Горизонтальное оперение на взлетно-посадочных скоростях обычно обтекается под отрицательными углами атаки. Обледенение его, уменьшая критический угол атаки при относительно большой скорости полета и малой перегрузке, может уже при малых отрицательных углах атаки привести к срыву потока.

Уменьшить опасность срыва при обледенении горизонтального оперения можно с помощью ряда конструктивных мер: увеличением площади и плеча подъемной силы стабилизатора, применением более несущих (несимметричных) профилей, профилированием щелей на стабилизаторе перед рулем высоты, выносом стабилизатора из зоны интенсивного скоса потока за крылом и уменьшением эффективного удлинения стабилизатора.

К потере управляемости самолета может привести обледенение щелей органов управления, передних кромок рулей, элеронов, закрылков, стыков секций предкрылков, примерзание органов управления при полете в условиях переохлажденного дождя или мокрого снега.

Рис. 7.5. Влияние обледенения на КПД воздушного винта: 1 – без обледенения; 2 – при обледене- нии

Образование льда на входной кромке воздухозаборника создает существенную неравномерность воздушного потока на входе в двигатель. Это может привести к снижению тяги и запаса устойчивости работы компрессора двигателя.

Обледенение лопаток ВНА или первых ступеней компрессора двигателя может привести к самопроизвольному сбрасыванию ледяных наростов. Возникающий дисбаланс ротора вызывает появление вибраций. Причем уровень этого дисбаланса может быть таким, что он может привести к разрушению подшипников ротора и всего двигателя.

Обледенение воздушных винтов по формам и видам образующегося льда мало отличается от обледенения крыла и оперения. Однако протяженность зоны обледенения по хорде лопасти может достигать 25...21% ее длины. Протяженность зоны обледенения по радиусу винта составляет 40...60%, считая от оси вращения. Концевые сечения обледенению не подвергаются из-за аэродинамического нагрева и повышенного уровня вибраций. Обледенение винта приводит к падению его КПД на 12...16% (рис. 7.5) и соответствующему уменьшению скорости полета на 20...30 км/ч (только за счет обледенения).

Рис. 7.6. Схема обледенения лопасти несущего винта при горизонтальном полете вертолета

Вертолетные винты гораздо более чувствительны к обледенению, чем самолетные, а само их обледенение отличается своеобразием. Это связано с тем, что скорости обтекания лопастей изменяются в очень широких пределах, вплоть до отрицательных в зоне обратного обтекания.

В зоне обратного обтекания интенсивность обледенения по передней кромке очень невелика и лишь слегка возрастает вдоль лопасти (рис. 7.6). Далее она начинает довольно быстро возрастать и, начиная с некоторого радиуса и до конца лопасти, возрастает примерно пропорционально расстоянию от оси вращения. Ближе к концевым зонам обледенение отсутствует, что вызывается сбросом льда при воздействии вибрации. Кроме того, обледенению подвергаются втулка и все детали управления винтом. Обледенение винта вызывает динамическую несбалансированность. При этом обычно ухудшается управляемость и, наконец, может произойти потеря устойчивости вертолета.

Обледенение остекления кабины экипажа, обтекателей антенн и датчиков пилотажно-навигационных приборов приводит к усложнению условий полета и созданию неблагоприятной обстановки для работы экипажа.

Из изложенного ясно, что для обеспечения безопасности полетов и повышения их регулярности ЛА должны оснащаться ПОС, защищающей указанные выше поверхности и агрегаты самолета или вертолета. Типовая схема зон защиты самолета от обледенения приведена на рис. 7.7.



Дата добавления: 2016-12-27; просмотров: 7226;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.