ГЕНЫ, ГЕНЕТИЧЕСКИЙ КОД И ЕГО СВОЙСТВА
БИОСИНТЕЗ БЕЛКА И НУКЛЕИНОВЫХ КИСЛОТ. ГЕНЫ, ГЕНЕТИЧЕСКИЙ КОД
В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.
Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.
Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.
План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима служба доставки закодированного плана из ядра к месту синтеза. Такую службу доставки исполняют молекулы РНК.
Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается. Процесс считки информации с ДНК и синтеза по ее матрице РНК называется транскрипцией, а синтезированная РНК называется информационной или и-РНК.
После дальнейших изменений этот вид закодированной и-РНК готов. и-РНК выходит из ядра и направляется к месту синтеза белка, где буквы и-РНК расшифровываются. Каждый набор из трех букв и-РНК образует «букву», обозначающее одну конкретную аминокислоту.
Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. Эта РНК называется транспортной, или т-РНК. По мере прочтения и перевода сообщения и-РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка. Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все варианты укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 (!) лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды, и этот процесс происходит непрерывно во всех клетках тела.
ГЕНЫ, ГЕНЕТИЧЕСКИЙ КОД И ЕГО СВОЙСТВА
На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.
Такие различия объясняются различиями в генотипах — наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.
Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.
Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК, гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип. Таким образом,
Ген – единица наследственной информации организма, которой соответствует отдельный участок ДНК
Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.
Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).
Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).
В состав и-РНК входят нуклеотиды А-Ц-Г-У, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ. Именно кодонами и-РНК отражается генетический код в записи.
Таким образом, генетический код — единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.
ОСНОВНЫЕ СВОЙСТВА ГЕНЕТИЧЕСКОГО КОДА:
1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, должно быть не менее трех. В этом случае число возможных триплетов нуклеотидов составляет 43 = 64.
2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле и-РНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.
3. Однозначность кода – одновременно с избыточностью коду присуще свойство однозначности: каждому кодону соответствует только одна определенная аминокислота.
4. Коллинеарность кода, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.
5. Генетический код неперекрываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).
6. Генетический код универсален, т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.
Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.
Дата добавления: 2021-03-18; просмотров: 633;