Конструкционные стали
Конструкционные стали должны обладать высокой конструктивной прочностью, обеспечивать длительную и надежную работу конструкции в условиях эксплуатации.
Материалы, идущие на изготовление конструктивных элементов, деталей машин и механизмов, должны наряду с высокой прочностью и пластичностью хорошо сопротивляться ударным нагрузкам, обладать запасом вязкости. При знакопеременных нагрузках должны обладать высоким сопротивлением усталости, а при трении – сопротивлением износу. Во многих случаях необходимо сопротивление коррозии, хрупкому разрушению и т. д. Помимо высокой надежности и конструктивной прочности, конструкционные материалы должны иметь высокие технологические свойства – хорошие литейные свойства, обрабатываемость давлением, резанием, хорошую свариваемость.
Для деталей и изделий находят применение дешевые углеродистые качественные стали, чаще всего для изделий неответственного назначения, и легированные стали – для ответственных тяжелонагруженных деталей.
Строительные стали.
К строительным относятся низкоуглеродистые и низколегированные стали, содержащие до 0,25 % углерода, недорогие и недефицитные легирующие элементы и обладающие повышенной прочностью и пониженной склонностью к хрупким разрушениям по сравнению с углеродистыми сталями. Они применяются для изготовления металлических конструкций и сооружений, для армирования железобетона.
Требования к сталям:
· определенное сочетание прочностных и пластических свойств;
· малая склонность к хрупким разрушениям (низкий порог хладноломкости);
· коррозионная стойкость;
· хорошая свариваемость;
· обработка резанием.
Строительные стали для металлических конструкций подразделяются по категориям прочности на стали нормальной, повышенной прочности и высокой прочности. Каждый класс прочности характеризуется минимально гарантированными значениями предела прочности σв и предела текучести σT. По хладостойкости строительные стали делят на стали без гарантированной хладостойкости, стали хладостойкие до –40 ºС и стали для эксплуатации конструкций ниже –40 ºС.
Детали строительных конструкций обычно соединяют сваркой, поэтому основным требованием к строительным сталям является хорошая свариваемость. Стали этого класса не должны давать горячих и холодных трещин. Так как склонность к образованию трещин зависит от содержания углерода, его количество ограничивается 0,25 %.
Примеры строительных сталей: 10, 15, 14Г2, 17ГС, 9Г2С, 14Г2АФ, 17Г2АФБ, 10ХНДП, 15ХСНД, 12Х2СМФ, 12ХГН2МФБАЮ.
Цементуемые (нитроцементуемые) стали.
Для изготовления деталей, находящихся под действием динамических нагрузок в условиях поверхностного износа, применяют стали с содержанием углерода 0,08–0,25 %, подвергая их цементации, закалке и низкому отпуску. Твёрдость поверхности готовой детали должна составлять около 58–62 HRC, твёрдость сердцевины в пределах 20–40 HRC. Сердцевина цементованных сталей должна иметь высокие механические свойства, особенно предел текучести.
В зависимости от степени упрочняемости сердцевины различают три группы цементуемых сталей: с неупрочняемой (например, стали марок 10, 15, 20), со слабо- (15Х, 20ХГ) и сильноупрочняемой сердцевиной (25ХГТ, 12ХН3А, 18Х2Н4МА, 20ХГНР и др.).
Стали первой группы применяют для изготовления малоответственных деталей небольших размеров. Под цементованным слоем при закалке аустенит превращается в ферритоцементитную смесь.
Стали второй группы (низколегированные хромистые) имеют слабоупрочняемую сердцевину с бейнитной структурой. Дополнительное легирование малыми добавками ванадия (сталь 15ХФ) позволяет получить более мелкое зерно, что улучшает пластичность и вязкость стали.
Стали третьей группы используют для изготовления деталей, испытывающих значительные ударные нагрузки, имеющих большее сечение или сложную конфигурацию или подвергающихся действию больших знакопеременных напряжений. Эти стали легируют хромом, марганцем, молибденом, титаном, ванадием, никелем, алюминием. Названные элементы способствуют повышению прокаливаемости, поверхностной твёрдости, износостойкости и контактной выносливости. Никель повышает вязкость сердцевины и диффузионного слоя и снижает порог хладноломкости. Легирование стали ванадием, титаном, алюминием, ниобием приводит к образованию дисперсных нитридов (VN, TiN и др.), карбидов (TiC, VC и др.), затормаживающих рост зерна аустенита. Уменьшение зерна способствует снижению хрупкости и повышению ударной вязкости стали.
Улучшаемые стали.
Для наиболее ответственных тяжелонагруженных деталей машин применяют легированные стали, подвергаемые улучшению, т. е. закалке с высоким отпуском. Эти стали содержат 0,3–0,5 % С, 1–6 % легирующих элементов. Примеры улучшаемых сталей: 40ХН, 45ХН, 30ХН3А, 36Х2Н2МФА, 38ХН3МА и др.
Стали закаливают от 820–880 ºС в масле (крупные детали в воде), высокий отпуск производят при 500–650 ºС с последующим охлаждением в воде, масле или на воздухе (в зависимости от состава стали). Структура стали после улучшения – сорбит зернистый. Наличие легирующих элементов обеспечивает этим сталям хорошую прокаливаемость и уменьшает склонность к отпускной хрупкости ІІ рода.
Улучшение обеспечивает высокую прочность в сочетании с высокой пластичностью. Так, простая и дешевая конструкционная легированная сталь 40Х после закалки с 860 ºС и отпуска при 500 ºС имеет следующие свойства:
σВ = 1000 МПа, σ0,2 = 800 МПа, δ = 10 %, KCU = 500 КДж/м2.
Износостойкие стали.
К износостойким сталям относится сталь 110Г13Л (сталь Гадфильда), имеющая следующий химический состав: 1,25 % углерода, 13 % марганца, 1 % хрома, 1 % никеля. Сталь Гадфильда при низкой начальной твёрдости (1800–2200 НВ) успешно работает на износ в условиях абразивного трения, сопровождаемого воздействием высокого давления и больших динамических (ударных) нагрузок. Высокая износостойкость стали достигается не только деформированным упрочнением аустенита, но и образованием мартенсита с гексагональной решеткой.
После литья структура стали состоит из аустенита и избыточных карбидов марганца и железа (Fe, Mn)3С. Образование однофазной аустенитной структуры достигается закалкой в воду от температуры 1050–1100 ºС. В таком состоянии сталь имеет высокую пластичность δ = 34–53 %, ψ = 34–43 %, низкую твёрдость 1800–2200 МПа и невысокую прочность σВ = 830–654 МПа. У этой стали повышенная способность упрочняться в процессе холодной пластической деформации. Так, при пластической деформации, равной 70 %, твёрдость стали возрастает с 2100 до 5300 НВ.
Эти стали контролируются на содержание фосфора, при повышенном его содержании сталь 110Г13Л хладноломка, так как, если фосфора в стали более 0,05 %, по границам зерна образуется хрупкая фосфидная эвтектика, на которой зарождается и растет хрупкая трещина при низких температурах. При использовании стали в северных районах содержание фосфора должно быть равно или менее 0,02–0,03 %.
Высокая вязкость аустенита, наряду с достаточной прочностью и износоустойчивостью, делает сталь Гадфильда незаменимым материалом для деталей, работающих на износ и удар одновременно. Из этих сталей изготавливают траки гусеничных машин, щеки дробилок, зубья ковшей экскаваторов и т. д.
Для изделий, подвергающихся износу в результате действия потока жидкости или газа, рекомендованы стали 30Х10Г10, 0Х14Г12М, обладающие высокой кавитационной стойкостью вследствие образования на поверхности мартенсита деформации при гидравлических ударах.
Недостатком износостойких сталей является плохая обрабатываемость резанием, поэтому детали из них чаще всего изготавливают литьём без механической обработки.
Рессорно-пружинные стали.
Рессорно-пружинные стали предназначены для изготовления пружин, упругих элементов и рессор различного назначения. Основными требованиями, предъявляемыми к данным сталям, являются высокое сопротивление малым пластическим деформациям (высокий предел упругости) с сохранением упругих свойств в течение длительного времени, а также необходимой пластичности и сопротивление хрупкому разрушению.
Стали для пружин и рессор содержат 0,5–0,7 % углерода. Их дополнительно легируют кремнием (до 2,8 %), марганцем (до 1,2 %), ванадием (до 0,25 %), вольфрамом (до 1,2 %) и никелем (до 1,7 %). При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям.
Термическая обработка легированных пружинных сталей – закалка от 850–880 °С, средний отпуск при 380–550 ºС – обеспечивает получение высоких пределов прочности (σВ = 1200–1900 МПа) и текучести (σ0,2 = 1100–1700 МПа) при пластичности δ = 5–12 %. Структура после термообработки – троостит отпуска.
Рессорно-пружинные стали должны обладать хорошей закаливаемостью и прокаливаемостью по всему сечению. Существенное (до двух раз) повышение предела выносливости рессор достигается их поверхностным наклёпом посредством дробеструйной и гидроабразивной обработок. После таких обработок в поверхностных слоях создаются остаточные сжимающие напряжения, что увеличивает выносливость.
Наиболее часто в автомобилестроении применяют кремнистые и кремнемарганцевые стали 60С2А, 65Г, 60СГА, которые при работе разогреваются до температур менее 200 °С. При нагреве до 300 °С используют пружины из стали 50ХФА, а при более высоких температурах сталь марки 3Х2В8Ф.
Для работы в агрессивных средах пружины изготавливают из хромистых коррозионно-стойких сталей типа 40Х13, 95Х18 и др.
Подшипниковые стали.
Стали для подшипников должны обладать высокой твёрдостью и износостойкостью в сочетании с высоким пределом контактной усталости, так как детали подшипников (шарики, ролики, обоймы) испытывают высокие удельные знакопеременные нагрузки. К сталям предъявляют требования по минимальному содержанию неметаллических включений, развитию карбидной неоднородности и пористости. Эти дефекты, находясь в поверхностном слое, становятся концентраторами напряжений и вызывают преждевременное усталостное разрушение. Долговечность сферических подшипников в значительной мере определяется отклонением от сферической формы, приводящим к биению. Эти отклонения тщательно контролируются.
Подшипниковые стали маркируют буквами Ш и Х, что означает шарикоподшипниковая и хромистая. Цифра после буквы показывает содержание хрома в десятых долях процента. Подшипники общего назначения изготавливают из сталей ШХ15, ШХ15СГ. Они проходят термообработку – закалку при 820–850 °С, охлаждение в масле. Перед отпуском детали охлаждают до 20–25 °С для обеспечения стабильности их работы (за счёт уменьшения количества остаточного аустенита). Отпуск проводят при 150–170 °С в течение одного-двух часов. После такой обработки структура стали состоит из мартенсита и мелких включений карбидов хрома и имеет твёрдость 60–64 HRC.
Подшипники, работающие в условиях агрессивных сред, изготавливаются из коррозионно-стойкой высокохромистой стали 95Х18Ш, в которой содержится 0,95 % углерода и 18 % хрома.
Для изготовления высокоскоростных подшипников применяют стали после электрошлакового переплава (к марке таких сталей добавляют букву Ш, например ШХ15Ш), отличающиеся наибольшей однородностью строения. Эти стали необходимы для изготовления высокоточных приборных подшипников, детали которых тщательно полируют с тем, чтобы обеспечить минимальный коэффициент трения.
Детали подшипников качения, испытывающие большие динамические нагрузки, изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей их цементацией и термической обработкой.
Автоматные стали.
Обработка резанием – основной способ изготовления большинства деталей машин и приборов. Обрабатываемость стали зависит от ее механических свойств, теплопроводности, микроструктуры и химического состава.
Повышение обрабатываемости резанием достигается технологическими и металлургическими приемами, причем последние более эффективны. Они предусматривают введение в конструкционную сталь серы, селена, теллура, кальция, изменяющих состав и количество неметаллических включений; свинца, создающего собственные металлические включения; фосфора, изменяющего свойства металлической основы. Эти включения создают в очаге резания внутреннюю смазку – тончайший слой, препятствующий схватыванию материала инструмента с материалом обрабатываемой детали, вследствие чего легче отделяется стружка. Легирование стали 0,15–0,3 % Рb повышает скорость резания на 20–35 %.
Сера в количестве 0,08–0,3 % находится в виде сульфидов марганца, вытянутых в направлении прокатки. Сульфиды оказывают смазывающее действие, нарушая при этом сплошность металла.
Фосфор в количестве 0,06 % повышает хрупкость феррита, облегчая отделение стружки металла во время процесса резания.
Оба элемента способствуют уменьшению налипания стружки на режущий инструмент и получению гладкой блестящей обрабатываемой поверхности. Однако повышенное содержание этих элементов ухудшает механические свойства, поэтому такие стали используют для изготовления изделий неответственного назначения.
Все стали с повышенным содержанием серы и фосфора относятся к группе автоматных сталей и маркируются буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Если автоматная сталь легирована свинцом, то обозначение марки начинается с сочетания букв «АС». Буква Е в марке стали говорит о том, что в состав входит селен.
Примеры автоматных сталей: А12 (0,12 % С, до 0,2 % S), А40Г (0,40 % С, до 0,3 % S, до 1,55 % Mn), АС40 (0,40 % С, ≤ 0,04 % S, до 0,30 % Pb), АС12ХН (0,12 % С, ≤ 0,035 % S, до 0,30 % Pb, 0,7 % Сr, 0,8 % Ni) и др.
Применение автоматных сталей обеспечивает снижение сил резания на 20–25 %, уменьшение износа инструмента в два-десять раз, повышение скорости резания на 20–40 % при сохранении стойкости инструмента.
Дата добавления: 2016-11-04; просмотров: 3319;