От проникновения воды


 

Вторая цифра условного обозначения Степень защиты
Специальная защита отсутствует
Защита от капель воды: капли воды, вертикально падающие на оболочку, не должны оказывать вредного воздействия на изделие
Защита от капель воды при наклоне оболочки до 150: капли воды, вертикально падающие на оболочку, не должны оказывать вредного воздействия на изделие при наклоне его оболочки на любой угол до 150 относительно нормального положения
Защита от дождя: дождь, падающий на оболочку под углом 600 от вертикали, не должен оказывать вредного воздействия на изделие
Защита от брызг: вода, разбрызгиваемая на оболочку в любом направлении, не должна оказывать вредного воздействия на изделие
Защита от водяных струй: струя воды, выбрасываемая в любом направлении на оболочку, не должна оказывать вредного воздействия на изделие
Защита от волн воды: вода при волнении не должна попадать внутрь оболочки в количестве, достаточном для повреждения изделия
Защита при погружении в воду: вода не должна проникать в оболочку, погруженную в воду, при определенных условиях давления и времени в количестве, достаточном для повреждения изделия
Защита при длительном погружении в воду: изделия пригодны для длительного погружения в воду при условиях, установленных изготовителям

 

 

Открытые машины, в конструкции которых не предусмотрено никаких мер для защиты, обозначаются IP00. Наиболее распространенными исполнениями по степени защиты являются IP22, IP23 и IP44. Первые два исполнения соответствуют защите от соприкосновения с токоведущими и вращающимися частями машины пальцев человека и твердых тел диаметром более 12 мм (первая цифра 2 в обозначениях), а также защите от попадания в них капель воды. Исполнение IP22 предусматривает защиту от проникновения внутрь машины капель, падающих под углом не более 150 к вертикали, а исполнение IP23 — под углом, не превышающим 600 к вертикали. Машины исполнений IP22 и IP23 называют каплезащищенными.

Машины исполнения IP44 выполнены защищенными от возможности соприкосновения инструментов, проволоки или других подобных предметов, толщина которых не превышает 1 мм, с токоведущими частями, а также от попадания внутрь машины твердых тел диаметром более 1 мм (первая цифра 4). Вторая цифра 4 обозначает, что машина защищена от попадания внутрь

 

корпуса водяных брызг любого направления. Такие машины называют также брызгозащищенными.

Для специальных целей выпускают электрические машины с более высокой степенью защиты, например IP57. В этом исполнении машина защищена от попадания пыли внутрь корпуса и может работать, погруженной в воду.

Исполнение по способу охлаждения электрических машин определяет ту или иную систему вентиляции, расположение вентилятора и систему забора охлаждающего воздуха. Машина исполнений IP22 и IP23 обычно выполняют с самовентиляцией и продувом воздуха через машину, при этом вентилятор располагается на валу машины, а воздух, проходя внутри корпуса, охлаждает обмотку и сердечники. Машины исполнения IP44 в большинстве случаев имеют наружный обдув. Охлаждающий воздух при этой системе охлаждения прогоняется вдоль наружной поверхности оребренного корпуса с помощью вентилятора, установленного вне корпуса на выступающем конце вала и с противоположной стороны от его выходного конца. Более подробно системы вентиляции и исполнения машин по способу их охлаждения рассмотрены в приложении П8.1—8.3 и в последующих главах [16].

Все эти электрические машины имеют много общего в конструкции обмоток, сердечников, валов, торцевых щитов, подшипниковых узлов и корпусов. Однако различия в требованиях, предъявляемых при эксплуатации, не позволяют создать полностью идентичные конструкции всех типов электрических машин, так же как и методов их расчета и проектирования. Каждый из типов машин (асинхронные, синхронные и машины постоянного тока) имеет свои особенности конструкции.

Асинхронные двигатели выпускают двух типов: с роторами, имеющими фазную обмотку, и с короткозамкнутыми роторами. Более распространены двигатели с короткозамкнутыми роторами, так как отсутствие изоляции обмотки роторов и скользящих контактов делает их наиболее дешевыми в производстве и надежными в эксплуатации. Основным недостатком таких двигателей является отсутствие надежного и экономичного способа плавного регулирования частоты вращения.

В настоящее время нашли применение вентильные двигатели, выполненные на базе асинхронных или синхронных двигателей с коммутаторами на тиристорах или транзисторах. Вентильные двигатели занимают среднее положение между двигателями постоянного тока и двигателями синхронными и асинхронными и применяются там, где необходимо изменять частоту вращения, а наличие коллектора и щеток нежелательно. Коммутатор, как правило, выполняется отдельно, а конструкция асинхронного или синхронного двигателя мало отличается от обычной [14].

 

Рис. 1.4. Асинхронный двигатель серии 4А Рис. 1.5. Асинхронный двигатель

в закрытом обдуваемом исполнении с фазным ротором с квадратной станиной 4А160УЗ

 

Асинхронные двигатели общего назначения выпускаются на низкое напряжение мощностью от 0,6 до нескольких сотен киловатт и на высокие напряжения (3,6 или 10 кВ) мощностью до нескольких десятков тысяч киловатт. Наиболее распространены низковольтные двигатели малой и средней мощности.

На рис. 1.4 показан асинхронный двигатель с короткозамкнутым ротором мощностью 15 кВт при 2р = 4 на напряжение 220/380 В. Конструктивная форма исполнения двигателя IМ1001, исполнение по степени защиты IР44. Такое исполнение характерно для большинства асинхронных машин мощностью менее 50…70 кВт. Низковольтные двигатели большей мощности с фазными и с короткозамкнутыми роторами выпускаются в большинстве случаев в двух исполнениях – IР23 и IР44.

На рис. 1.5 показан асинхронный двигатель серии 4А с фазным ротором мощностью 250 кВт при 2р = 4, исполнение по степени защиты IР23. Основной конструкцией асинхронных двигателей являются серии 4АМ и АИ, которые отличаются друг от друга выполнением корпуса и подшипниковых узлов. Активные части в этих сериях идентичны.

Синхронные машины общего назначения распространены значительно меньше, чем асинхронные. Синхронные генераторы сравнительно небольшой мощности (до нескольких тысяч киловатт) применяются в автономных установках. Синхронные двигатели не получили широкого распространения из-за более сложной конструкции, большей стоимости и худших пусковых характеристик. Они находят применение в приводах компрессоров, воздуходувок и т. п. Синхронные машины могут быть использованы одновременно и как двигатели, и как генераторы реактивной энергии, что дает им большое преимущество перед асинхронными двигателями, являющимися потребителями реактивной энергии.

 

 

Рис. 1.6. Синхронный двигатель

 

Синхронные машины в зависимости от конструкции ротора делятся на явно– и неявнополюсные.

В явнополюсной конструкции более удобно располагать обмотку возбуждения, чем в пазах ротора с неявновыраженными полюсами. Поэтому все синхронные машины с числом пар полюсов более двух выполняются с явнополюсным ротором. В двухполюсных машинах из-за большой частоты вращения центробежные силы, действующие на ротор, настолько велики, что не удается надежно закрепить на нем явно выраженные полюсы с обмоткой. Обмотку возбуждения приходится укладывать в отдельные пазы, рассредоточивая их по окружности ротора.

Синхронные машины общего назначения выполняют, в основном, с явнополюсными роторами. На рис. 1.6 показан синхронный двигатель мощностью 17500 кВт на частоту вращения 375 об/мин. Из-за большой массы вала и ротора его подшипниковые узлы установлены на подшипниковых стойках вне корпуса машины.

Наряду с крупными синхронными машинами выпускают синхронные двигатели и генераторы мощностью менее 100 кВт на низкое напряжение. Для упрощения эксплуатации и повышения надежности они выполнятся с самовозбуждением (обмотка возбуждения питается постоянным током от выводов статора через выпрямитель). В настоящее время разработаны конструкции синхронных машин, в которых отсутствует скользящий контакт, при этом выпрямительные элементы установлены на роторе, а ток в обмотке возбуждения возникает за счет высших гармоник поля или с помощью бесконтактного возбудителя.

Двигатели постоянного тока допускают плавное регулирование частоты вращения в широком диапазоне, обладают высокими пусковыми и перегрузочными моментами. Это определило их распространение в приводах, требующих изменения частоты вращения или специальных скоростных характеристик: в станкостроении, электротранспорте, в металлургической, текстильной и полиграфической промышленностях, других отраслях народного хозяйства.

Генераторы постоянного тока применяют для питания обмоток возбуждения синхронных машин, в системах генератор—двигатель и в некоторых специальных производствах, как, например, в химической промышленности для целей электролиза и т. п.

В то же время машины постоянного тока не получили такого широкого распространения, как асинхронные, из-за меньшей надежности, сложности эксплуатации и большей стоимости, обусловленных наличием в их конструкции механического преобразователя частоты коллектора. Эти машины могут иметь различные конструкции коллектора, якоря, обмоток и полюсов. Машина постоянного тока общего назначения, проектирование которых рассмотрено в последующих главах, имеют вращающийся якоря, цилиндрический коллектор и неподвижные полюсы с обмотками возбуждения, расположенными на станине.

На рис. 1.7 показан двигатель постоянного тока мощностью 110 кВт и номинальной частотой вращения 1500 об/мин, исполнения по степени защиты IP22. Такое исполнение является типичным для двигателей постоянного тока общего назначения, так как они большей частью устанавливаются, в которых исключается попадание на машины капель, падающих под углом более 150 к вертикали.

С каждым годом в конструкцию серий машин переменного и постоянного тока вводится все большая унификация, различные узлы и детали машин стремятся делать одинаковыми. В то же время применение гибких автоматизированных производств позволяет выполнять большее число модификаций на основе базовой модели.

В последние десятилетия проявляется тенденция к объединению электрических машин с управляющими силовыми полупроводниковыми элементами и микропроцессорами. При этом вентильные двигатели наряду с асинхронными двигателями и двигателями постоянного тока находят все большее применение. Создание серий электромеханических систем для широкого класса электроприводов внесет новые изменения в конструкцию электрических машин.

Унификация и стандартизация в электрической промышленности.Стандартизация является частью общегосударственной технической политики, средством внедрения в производство передовых достижений науки, обеспечения оптимального уровня качества продукции, экономии трудовых и материальных затрат. Унификация базируется на анализе требований различных министерств и ведомств к разработке единой серий электрооборудования.

  Рис. 1.7. Продольный и поперечный разрезы двигателя постоянного тока серии 4ПО   1 — корпус; 2 — магнитопровод статора; 3 — щит подшипниковый передний; 4 — сердечник якоря; 5 — вентилятор; 6 — кожух; 7 — коробка выводов; 8 — коллектор; 9 — токосъемный аппарат  

 

На базе единых серий машин и трансформаторов разрабатываются модификации, предназначенные для различных условий работы. Внутри серии проводится максимальная унификация узлов и деталей.

Стандартизация в электротехнической промышленности строится на базе государственной системы стандартизации. Стандарты являются обязательными в пределах установленной сферы их действия, области и условий их применения.

Кроме стандартов утверждаются технические условия (ТУ), представляющие собой распространенный вид нормативно-технической документации.

В основу стандартизации подотраслевой электротехнической промышленности положены базовые стандарты. Таким стандартом для электрических машин является ГОСТ 183, устанавливающий общие технические требования на все электрические машины. На основе единых стандартов устанавливаются стандарты на единые серии (например, на асинхронные, синхронные машины и др.).

При стандартизации электрооборудования применяются ряды предпочтительных чисел, построенные на геометрической прогрессии:

Оказалось достаточным иметь четыре десятичных ряда геометрической прогрессии:

 

Ряд Знаменатель ряда Количество членов в пределах ряда
R5
R10
R20
R40

 

Каждый ряд построен на знаменателе прогрессии , , , в интервале от 1 до 10. Числа свыше 10 получаются умножением на 10, 100, 1000 и т. д., а числа меньшие 1 — умножением на 0,1; 0,01; 0,0001 и т. д.

По предпочтительным числам и геометрическим рядам предпочтительных чисел построен ряд номинальных мощностей электрических машин и трансформаторов (ГОСТ 12139—84). Шкала регламентированных мощностей приведена в приложении 6. В стандартах на электрические машины устанавливаются размеры, технические требования, методы испытаний, номинальные напряжения в вольтах, частота вращения (синхронная) в оборотах в минуту и мощности в киловаттах или ваттах.

Размеры электрических машин, определяющие возможность их монтажа и сочленения с рабочими механизмами (высота оси вращения, диаметры концов валов), устанавливаются в соответствии с ГОСТ 6636 «Номинальные линейные размеры». Этот ГОСТ устанавливает ряды линейных размеров в интервале от 0,001 до 20000 мм, которые применяются в машиностроении.

Высоты оси вращения и установочные размеры электрических машин приведены в приложении 6.

Развитие международных связей и значительное увеличение объема электротехнической продукции, которой обмениваются разные страны, обуславливают необходимость международной стандартизации. Основные цели международной стандартизации определены Постоянным техническим комитетом Международной организации по стандартизации (СТАКО и ИСО). Международные стандарты ИСО и МЭК играют важную роль в создании новых серий электрических машин и ликвидации торговых барьеров между странами.

Основополагающие стандарты на электрические машины и стандарты, регулирующие общие для электротехники нормы и правила приведены в «Справочнике по электрическим машинам», том I [16].

 

 



Дата добавления: 2016-11-04; просмотров: 1973;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.021 сек.