Гигиеническое значение физических свойств воздуха.
При оценке воздушной среды следует учитывать ее физические свойства (температуру, влажность; подвижность воздуха, барометрическое давление, электрическое состояние); химические свойства (содержание компонентов воздуха и различных газообразных примесей); бактериальный состав; наличие механических примесей в виде пыли, сажи.
Физические свойства воздуха определяют теплообмен организма с окружающей средой. Теплообмен организма осуществляется благодаря процессам химической и физической терморегуляции.
Химическая терморегуляция обусловлена способностью организма изменять интенсивность обменных процессов. Накопление тепла в организме происходит как в результате окисления веществ, содержащихся в пище, и выработки тепла при мышечной работе, так и от лучистого тепла Солнца, нагретых предметов, теплого воздуха и горячей пищи.
Организм отдает тепло в процессе теплоотдачи, путем конвекции, излучения и испарения пота.
Теплоотдача осуществляется при соприкосновении с холодными поверхностями. Конвекционная отдача тепла происходит при нагревании воздушных масс. Отдача тепла излучением возможна вблизи предметов, имеющих более низкую температуру, чем кожа человека. Организм также отдает тепло при испарении пота. Потеря тепла испарением зависит от количества пота, испаряющегося с поверхности тела. При испарении 1 гр. пота организм теряет 0,6 ккал.
Небольшое количество тепла выводится из организма с выдыхаемым воздухом и физиологическими отправлениями.
Терморегуляционные механизмы функционируют под контролем центральной нервной системы, и в зависимости от ее состояния возможно изменение процессов как теплопродукции, так и теплоотдачи. В состоянии покоя и теплового комфорта теплоотдача путем конвекции составляют 15%, излучения — 55%, испарения — 30 %.
Теплоотдача зависит от разницы температур поверхности тела человека и предметов, а также от теплопроводности этих предметов. Теплопроводность воздуха ничтожна, поэтому отдача тепла через неподвижный воздух исключена.
Интенсивность отдачи тепла конвекцией зависит от площади поверхности тела человека, разности температуры воздушной среды и тела, от скорости движения воздуха.
Усиленные конвекционные токи способствуют быстрому охлаждению организма. При одной и той же температуре воздуха повышенная подвижность воздуха способствует более быстрому охлаждению кожи человека.
В процессах теплообмена организма с окружающей средой большое значение имеет лучистый (радиационный) теплообмен. Согласно физическим законам, всякое тело при температуре выше абсолютного нуля излучает тепло в окружающее пространство. Теплоизлучение зависит только от теплового состояния нагретого предмета и не зависит от температуры окружающей среды.
Лучистое тепло и тепло воздушных масс (конвекционное тепло) вызывают одно и то же субъективное ощущение тепла, но механизм и пути воздействия этих видов тепла на организм различны. Лучистое тепло — проникающее, конвекционное тепло воздействует на поверхность тела человека и, следовательно, глубоко не проникает.
Между человеком и окружающими предметами идет непрерывный обмен лучистым теплом. Если поверхность тела человека излучает столько тепла, сколько принимает от окружающих предметов, то радиационный баланс равен нулю. Если средняя температура окружающих предметов выше температуры кожи человека, то человек получает больше лучистого тепла, чем излучает сам, т.е. радиационный баланс положительный. Отрицательный радиационный баланс создается тогда, когда человек отдает лучеиспусканием больше тепла, чем получает от окружающих предметов.
В случае резкого нарушения радиационного баланса наблюдается перегревание или охлаждение. Например, в горячих цехах возможно перегревание рабочих не только из-за высокой температуры воздуха, но и в результате интенсивного притока лучистого тепла от нагретых поверхностей, раскаленного металла и т.д.
Холодные и сырые стены создают условия для отрицательного радиационного баланса, человек охлаждается, интенсивно излучая тепло в сторону холодных ограждений. При этом, несмотря на благоприятную температуру воздуха, человек часто ощущает тепловой дискомфорт. При сочетании радиационного охлаждения и низкой температуры воздуха наблюдается более быстрое и более глубокое охлаждение организма.
Температура воздуха является постоянно действующим фактором окружающей среды. Человек подвергается действию колебаний температуры воздуха в различных климатических районах, при изменении погодных условий, при нарушении температурного режима в жилых и общественных зданиях.
Влияние неблагоприятной температуры воздуха на организм наиболее выражено в производственных условиях, где возможны очень высокие или очень низкие температуры воздуха, или при работе на открытом воздухе.
При воздействии на организм высокой температуры (выше 35 °С) нарушается в первую очередь отдача тепла конвекцией, в этих условиях организм освобождается от излишнего тепла преимущественно потоиспарением.
На отдачу тепла потоиспарением существенно влияют влажность и подвижность воздуха. Так, при температуре воздуха выше 35 °С и умеренной влажности потеря влаги в результате потоиспарения может достигать 5 — 8 л/сут, в исключительных случаях — 10 л/сут. Вместе с потом из организма выделяются соли, среди которых большую долю составляют хлориды. С потом выделяются и водорастворимые витамины С и группы В.
Потеря солей плазмой крови ведет к повышению вязкости крови, что затрудняет работу сердечно-сосудистой системы. При длительном воздействии высокой температуры воздуха нарушается деятельность органов пищеварения. Выделение из организма хлорид-ионов и большого количества воды ведут к угнетению желудочной секреции и снижению бактерицидности желудочного сока.
Высокая температура воздуха отрицательно сказывается на функциональном состоянии нервной системы, что проявляется ослаблением внимания, нарушением точности и координации движений, замедлением реакций. Это ведет к снижению качества работы и увеличению производственного травматизма.
У рабочих, постоянно подвергающихся воздействию высокой температуры воздуха, снижается иммунобиологическая активность, повышается общая заболеваемость. Резкое перегревание организма вызывает болезненность мышц, сухость во рту, нервно-психическое возбуждение и может привести к тепловому удару. Такие явления чаще всего возникают при тяжелом физическом труде в жарком влажном климате.
В условиях Крайнего Севера или в особых производственных помещениях человек подвергается воздействию низких температур. При очень низких температурах воздуха теплоотдача излучением и конвекцией значительно возрастает, а испарением потом — снижается. В этом случае общие теплопотери превышают теплопродукцию, что приводит к дефициту тепла, понижению температуры кожи и охлаждению организма.
Понижение температуры и ослабление тактильной чувствительности кожи становятся наиболее чувствительной реакцией организма на изменение теплового состояния при охлаждении. Происходит изменение функционального состояния центральной нервной системы, что проявляется в своеобразном наркотическом действии холода, ведущем к ослаблению мышечной деятельности, резкому снижению реакции на болевые раздражения, адинамии и сонливости.
Местное охлаждение, особенно охлаждение ног, способствует развитию простудных заболеваний, что связано с рефлекторным снижением температуры слизистой оболочки носоглотки.
Это явление учитывается при гигиенической оценке температурного режима жилых и общественных зданий посредством регламентации перепадов температуры воздуха по вертикали, которые не должны превышать 2 °С на 1 м высоты.
Известны случаи отморожения нижних конечностей у солдат при температуре воздуха, близкой к нулю, из-за длительного вынужденного положения в окопах, которое приводило к нарушению кровообращения в конечностях («окопная», или «траншейная стопа»).
Ноги быстро охлаждались в результате интенсивной теплоотдачи излучением в сторону холодных и сырых стен окопа. Переохлаждение усугублялось увлажнением одежды, которая становилась более теплопроводной, что приводило к большой потере тепла.
Большое число отморожений и даже смертей от переохлаждения наблюдается при сочетании низкой температуры, высокой влажности и большой подвижности воздуха. Температурой комфорта в жилище является температура +18º С.
Влажность воздуха имеет большое значение, поскольку влияет на теплообмен с окружающей средой. Абсолютная влажность воздуха дает представление об абсолютном содержании водяных паров в граммах в 1 м3 воздуха, но не показывает степень насыщения воздуха парами.
При одной и той же абсолютной влажности насыщение воздуха водяными парами будет различно при разной температуре. Чем ниже температура воздуха, тем меньше водяных паров необходимо для его максимального насыщения, и, наоборот, для максимального насыщения воздуха при высокой температуре абсолютная влажность должна быть выше.
При гигиеническом нормировании учитывают относительную влажность воздуха (в процентах) и дефицит его насыщения, т. е. разность максимальной и абсолютной влажностей воздуха. Эти величины влияют на процессы теплоотдачи человека путем потоиспарения. Чем больше дефицит влажности, тем суше воздух, тем больше водяных паров он может воспринимать, следовательно, тем интенсивнее может быть отдача тепла потоиспарением. Высокая температура переносится легче, если воздух сухой.
При температуре воздуха, близкой к температуре кожи, теплоотдача излучением и конвекцией резко снижена, но возможна теплоотдача через потоиспарение. При сочетании высокой температуры воздуха и высокой (более 90%) относительной влажности воздуха испарение пота практически исключено: пот выделяется, но не испаряется, поверхность кожи не охлаждается, наступает перегревание организма.
При высоких температурах воздуха низкая и умеренная (до 70 %) относительная влажность способствует усиленному потоиспарению, что исключает перегревание. При низких температурах сухой воздух уменьшает теплопотери.
Неблагоприятное влияние сухого воздуха проявляется только при крайней степени его сухости. Чрезмерно сухой воздух при низкой (менее 20 %) относительной влажности иссушает слизистую оболочку носа, глотки и рта. На слизистых образуются трещины, которые легко инфицируются, что способствует развитию воспалительных явлений. Нормируемое значение относительной влажности составляет 40-60%.
Подвижность воздуха влияет на теплоотдачу организма конвекцией и потоиспарением. При высокой температуре воздуха его умеренная подвижность способствует охлаждению кожи. Действие на организм чрезмерно сухого воздуха усугубляется при его большой подвижности. Горячий ветер не только вызывает перегревание, но и ухудшает самочувствие человека, снижает работоспособность.
Мороз в тихую погоду переносится легче, чем при сильном ветре; наоборот, ветер зимой вызывает переохлаждение кожи в результате усиленной отдачи тепла конвекцией и увеличивает опасность обморожений. Повышенная подвижность воздуха рефлекторно влияет на процессы обмена веществ: по мере понижения температуры воздуха и увеличения его подвижности повышается теплопродукция.
Сильный (более 20 м/с) ветер нарушает ритм дыхания, механически препятствует выполнению физической работы и передвижению. Умеренный ветер оказывает бодрящее действие, сильный продолжительный ветер резко угнетает человека. Благоприятная подвижность атмосферного воздуха в летнее время составляет 1 — 5 м/с.
В санитарной практике определяется скорость движения воздуха и направления ветра.Скорость движения ветра выражается в метрах в секунду. Направление и силу ветра используют при строительстве и планировании населенных пунктов. Для этого учитывают все направления ветров в течение года, по этим данным, строят график, получивший название розы ветров. Таким образом, графическое изображение повторяемости ветра на данной местности называют розой ветров.
В атмосферном воздухе наряду с пылью и дымом содержаться и вредные бактерии. Микроорганизмы попадают в воздух при кашле, чихании, разговоре, из почвы. Устойчивость бактериальных аэрозолей в атмосферном воздухе зависит от метеофакторов, а внутри помещения от наличия или отсутствия вентиляции, способа уборки (влажной, сухой).
Микрофлора воздуха представлена общим разнообразием – микрококками, спороносными бактериями, и др., которые, как правило, устойчивы к высыханию, ультрафиолетовому излучению и другим факторам окружающей среды. Через воздух передаются многие воздушно-капельные инфекции: корь, грипп, ОРВИ и другие.
Патогенные микроорганизмы обнаруживаются в воздухе инфекционных больниц и гнойных хирургических отделений, где возможно заражение инфекциями, передающимися воздушно-капельным путем (грипп, коклюш, дифтерия и т.д.).
Для обеззараживания воздуха в ЛПУ применяют бактерицидные лампы. Существует нормирование содержания микроорганизмов в воздухе некоторых помещений – для операционных, аптек и т.д.
Атмосферное давление. Под влиянием притяжения атмосфера оказывает давление на поверхность земли и предметы, находящиеся на ней.
На уровне моря каждый 1 см. земли испытывает давление вертикального столба воздуха равно 1.033 кг и давление ртутного столба высотой 760 мм. (нормальное давление). Колебания атмосферного давления на земной поверхности за сутки по временам года незначительны и не заметны для здоровья человека. Более значительное изменение атмосферного давления человек испытывает при полете на самолетах и при восхождении на горы.
Понижение давления сопровождается уменьшением парциального давления О2, что служит основной причиной появления так называемой высотной болезни. Понижение атмосферного давления вызывает так называемый высотный метеоризм, обусловленный расширением газов в ЖКТ, что влечет за собой ряд функциональных расстройств: высокое стояние диафрагмы, ограничение глубин дыхания, затруднение притока крови к правому предсердию, повышение артериального давления.
Высотный метеоризм усугубляет действие О2 недостаточности, поэтому при полетах на высоте, превышающей 2,5 – 3 км. необходимо применять кислородные приборы. На высоте 8 –9 км могут появиться боли в мышцах, суставах – развивается высотная декомпрессионная болезнь. Для предупреждения этого полеты осуществляются в скафандрах или в самолетах с герметичными кабинами.
Действию повышенного атмосферного давления подвергаются рабочие кессонов, рудников, водолазы. При погружении в воду каждые 10 метров давление возрастает примерно на 1 атм.
Известно, что при нормальном атмосферном давлении в 100 см3 в крови растворяется около 1,8 см3 азота. С повышением давления количество растворяемого в крови азота увеличивается, следовательно, и в тканях. При переходе от повышенного давления к нормальному, азот вследствие разницы парциального давления переходит из тканей в кровь и выделяется через легкие.
При быстрой декомпрессии (снижение давления) большой разницы между парциальным давлением азота в окружающей среде и парциальным давлением азота, растворившегося в тканях организма, последний выделяется в кровь с бурным образованием пузырьков. Вследствие чего может возникнуть газовая эмболия в разных органах (кессонная болезнь). Сущность профилактики в нормировании профессиональной деятельности рабочего времени и в режиме декомпенсации.
Солнечная радиация. Солнечной радиации обязана своим существованием вся органическая жизнь на земле. Солнечная радиация - этопоток электромагнитных колебаний с различной длиной волны.
В спектральном составе солнечного света, достигающего поверхности земли, выделяют:
1. Инфракрасную часть - это лучи с длинной волны от 4000 до 760 Нм. обладают глубоким тепловым действием, усиливают обмен веществ и действие УФ лучей. При длительном воздействии теплового излучения на производстве может развиться профессиональная катаракта (или «катаракта стеклодувов»).
2. Видимую часть - это лучи с длинной волны от 760 до 390 Нм, обладают тепловым действием, слабым фотохимическим действием, общебиологическим действием, что проявляется в специфическом воздействии на функцию зрения, состояние ЦНС и через нее на весь организм человека.
3. Ультрафиолетовая часть - это лучи с длинной волны от 390 до 290 Нм, обладает выраженным фотохимическим действием, пигментообразующее действие, общестимулирующее действие, синтез витамина Д, бактерицидное действие.
Количество солнечной радиации, доходящее до поверхности земли, зависит главным образом от высоты стояния солнца над горизонтом от степени прозрачности атмосферы. При низком стоянии солнца и прохождении радиации через загрязненную атмосферу очень сильно задерживаются ультрафиолетовые лучи. Обычное стекло так же не пропускает ультрафиолетовые лучи.
При недостаточном облучении организма УФ – лучами развивается солнечное голодание. При этом понижается сопротивляемость организма к инфекциям, падает жизненный тонус. Недостаточный синтез витамина Д у детей приводит к рахиту: кости, в которых уменьшено содержание Са, теряют прочность, делаются гибкими, легко искривляются.
У взрослых наблюдается остеопороз (разрушение костей), они становятся ломкими и при переломах медленно срастаются. При недостаточности УФ – лучей нарушается кроветворение и стойкость капилляров. Солнечное голодание характерно для Северных районов страны, а также для некоторых профессиональных групп – шахтеры, больные, длительно находящиеся в постельном режиме.
Поэтому большое значение придает профилактика солнечного голодания. У детей правильный режим дня - прогулки, игры, сон на воздухе. Важным является правильная планировка населенных пунктов, санитарная охрана атмосферы. Если перечисленные мероприятия недостаточно, показано профилактическое облучение ультрафиолетовыми лучами, при помощи специальных ламп.
Биодоза - наименьшее количество УФ – излучения, которое вызывает под отверстиями биодозиметра на поверхности кожи слабо, но ясно очерченное покраснение через 6 – 8 часов после облучения.
Летом в ясную солнечную погоду можно получить биодозу в течение 30 мин., а профилактическую в течение 4 – 7 мин.
Солнечная радиация может привести к: солнечному ожогу и удару, перегрев и сенсибилизации организма, обострению хронических заболеваний. Поэтому прямыми солнечными лучами (грудным детям, пожилым людям, при активном туберкулезе) рекомендуется облучаться в тени в течение 1 – 2 часов, за счет рассеяного излучения.
Помещения для профилактического облучения людей с помощью эритемных или ртутно – кварцевых ламп называют фотариями. Они оборудуются при поликлиниках, ДДУ и здравпунктах шахт.
Дата добавления: 2021-01-26; просмотров: 464;