Библиографический список
1. Березин Б.Д., Березин Д.Б. Курс современной органической химии. – М.: Высшая школа, 1999. – 768с.
2. Артёменко А. И. Органическая химия: Учеб. пособие для студ. не хим. специальности вузов / А.И. Артёменко. – М.: Высш. шк., 2003. – 605 с.
3. Васильева Л.С. Автомобильные эксплуатационные материалы: Учеб. для вузов / Л.С. Васильева – М.: Наука-Пресс, 2003. – 421 с.
4. Гуреев А.А. и др. Химмотология: учебник для ВУЗов / А.А. Гуреев, И.Г. Фукс, В.Л. Лашхи. – М.: Химия, 1986. – 367 с.
5. Кириченко Н.Б. Автомобильные эксплуатационные материалы: Учеб. пособие для сред. проф. образования / Н.Б. Кириченко. – М.: Издательский центр «Академия», 2003. – 208 с.
ПРОИЗВОДСТВО АВТОМОБИЛЬНЫХ ЭКСПЛУАТАЦИОННЫХ
МАТЕРИАЛОВ
Россия одно из немногих крупных индустриальных государств использующее в своём экономическом развитии собственные топливно-энергетические ресурсы. И главным источником для производства топлив, смазочных материалов, тормозных и амортизационных жидкостей является нефть. Кроме того, из нефти получают обивочные материалы, пластические массы, резиновые изделия и т.д., т.е. почти все неметаллические материалы, применяемые в автомобиле.
Нефть используется и в других отраслях промышленности для тех же целей что и в автомобилестроении, и, кроме того, для получения растворителей, асфальта, синтетических моющих средств, кокса и многого другого.
Нефть относится к невозобновляемым видам сырья, запасы её ограничены. Старые месторождения нефти истощаются, но, несмотря на использование современных технологий, в земле остаётся половина запасов, т.к. извлекать нефть полностью пока не удаётся.
Новые месторождения открывают, как правило, в труднодоступных, малообжитых районах, либо на морском шельфе. В связи с этим запасы на добычу нефти велики.
Поэтому развитие производства и потребления автомобильных топливо-смазочных материалов идёт по трём основным направлениям:
1) Увеличение ресурсов жидких нефтяных топлив:
а) углубление переработки нефти; (повышение выхода топлива);
б) оптимизация качества топлив.
2) Снижение расхода топлива в двигателях:
а) дизелизация автомобилей; (Дизель на 25…30 % расходует меньше бензинового двигателя);
б) конструктивное усовершенствование двигателей;
в) снижение фактического расхода в условиях эксплуатации.
3) Применение альтернативных топлив:
а) сжиженные и сжатые газы;
б) из углей, сланцев и др. горючих ископаемых;
в) кислородосодержащие топлива (спирты, эфиры и др.).
Нефть
Сырая нефть представляет собой маслянистую жидкость от светло-коричневого до чёрного цвета, иногда буро-зелёного, в зависимости от месторождения. У разных нефтей различен не только цвет, но и запах, вязкость. Плотность нефти изменяется в пределах 700…900 кг/м3.
До 99 % в нефтях содержатся углеводороды разнообразного строения: парафиновые, циклопарафиновые (нафтеновые), ароматические. Низшие газообразные парафины сопутствуют нефти (попутный нефтяной газ), частично растворены в ней. В жидких углеводородах растворены также высшие твёрдые углеводороды.
Нефти, содержащие большое количество парафиновых углеводородов, называют парафиновыми (грозненская, среднеазиатская, пенсильванская). Нефти богатые циклопарафинами называют нафтеновыми (бакинская). Есть нефти богатые ароматическими углеводородами (уральская, украинская, румынская). Нефти, дающие при переработке значительное количество гудрона, называют асфальтовыми.
Кроме углеводородов в состав нефти в малом количестве входят соединения, содержащие кислород (нафтеновые кислоты, фенол), серу (тиофен и его производные), азот (гетероциклические соединения).
Использование нефти в качестве топлива связано с её высокой теплотворной способностью: при сгорании 1 кг нефти выделяется 41700 - 46000 кДж; 1 кг угля - 33300 кДж; 1 кг древесины – 19500 кДж. И хотя Д.И. Менделеев и говорил: «Нефть не топливо – топить можно и ассигнациями», нефть нас прежде всего интересует как источник топлива и смазочных материалов. Топливо - источник энергии двигателей и машин, а смазочные материалы - средство снижения трения и износа механизмов, а, следовательно, снижения потерь и увеличения долговечности и безотказности машин.
Принято различать элементарный, групповой и фракционный составы нефти.
Элементарный состав определяет, какие химические элементы и в каком соотношении содержатся в нефти. Основные элементы это углерод (84…87 %), водород (12…15 %). Остальное - сера, азот, кислород и некоторые другие элементы, в том числе и металлы.
Групповой состав определяется группами входящих в нефть углеводородов. Основные: метановые (насыщенные, парафиновые, предельные, алканы) с общей структурной формулой СnН2n+2); нафтеновые (полиметиленовые, цикланы) с общей структурной формулой Сn Н2n и ароматические (бензольные, арены) с общей структурной формулой СnН2n-6.
Углеводороды, содержащие от 1 до 4 атомов углерода, при нормальных условиях являются газами и могут находиться в нефтях и нефтепродуктах в растворённом виде. Жидкие углеводороды, содержащие в молекуле от 5 до 20 атомов углерода, входят в состав топлив. В состав масел входят углеводороды с числом атомов углерода в молекуле от 20 до 70. Углеводороды парафинового ряда нормального строения с 17 и более атомами углерода - твёрдые вещества и находятся в нефтях в растворенном состоянии.
Фракционный состав нефти определяется при её разделении по температурам кипения входящих соединений. Фракцией называют часть жидкости, выкипающей в определённом диапазоне температур. Большое разнообразие углеводородов в нефти приводит к тому, что нефть не имеет постоянной температуры кипения и при нагревании выкипает в широких температурных пределах. Наиболее лёгкие углеводороды начинают испаряться и выкипать при слабом нагревании до 30…400 С. При одной и той же температуре могут выкипать углеводороды, обладающие различным групповым составом, следовательно, в одну и ту же фракцию входят углеводороды разных групп.
Примеси к нефти. Среди примесей наибольшее влияние на качество топливо-смазочных материалов оказывают сернистые и кислородные соединения. Эти соединения оказывают многостороннее влияние на эксплуатационные характеристики двигателей и механизмов и прежде всего на их коррозионный износ.
Сернистые соединения разделяют на активные и неактивные. К активным относят элементарную серу S, сероводород H2S и меркаптаны RSH, к неактивным - сульфиды RSR, дисульфиды RS2R, полисульфиды RSnR и т.д.
Основную часть кислородных соединений составляют органические кислоты, главным образом нафтеновые, и смолисто-асфальтовые вещества. В состав этих веществ могут входить и сера и азот. Смолисто-асфальтовые вещества делят на смолы, асфальтогеновые кислоты, асфальтены, карбены и карбоиды.
Смолы - высокомолекулярные кислородосодержащие вещества, в состав которых могут входить сера, азот и некоторые металлы.
Асфальтогеновые кислоты (полинафтеновые) - смолистые вещества, входящие в состав высокомолекулярных частей нефти.
Асфальтены - высокомолекулярные твёрдые и мазеобразные вещества. При нагревании свыше 3300 С разлагаются с образованием газа и кокса.
Карбены - продукты уплотнения и полимеризации асфальтенов.
Карбоиды - комплекс высокомолекулярных соединений, образующихся при окислении и термическом разложении нефти и нефтепродуктов. Карбены и карбоиды - твёрдые вещества черного цвета, нерастворимые в органических и минеральных растворителях.
Задача создания высококачественных двигателей и машин связана с изучением свойств топливо-смазочных материалов, физико-химических процессов, происходящих в двигателе и механизме. В результате на стыке таких наук, как физика, органическая, физическая и коллоидная химия, теплотехника, экология появилось новое научное направление - химмотология.
Основными задачами химмотологии являются:
а) определение оптимальных требований к топливо-смазочным материалам;
б) разработка и внедрение новых сортов;
в) классификация;
г) установление научно обоснованных норм расхода;
д) разработка методов оценки эксплуатационных свойств, испытаний и контроля качества;
е) изучение процессов, происходящих с топливо-смазочными материалами в двигателях, при хранении и транспортировке;
ж) установление влияния свойств топливо-смазочных материалов на надёжность, долговечность и экономичность двигателей и машин;
з) решение проблем по защите окружающей среды.
Химмотология разделяет свойства топливо-смазочных материалов на три группы:
- физико-химические;
- эксплуатационные;
- экологические.
К физико-химическим относят свойства, определяемые в лабораториях, например: плотность, вязкость, испаряемость, теплота сгорания и т.д. К эксплуатационным - свойства, проявляющиеся непосредственно в двигателе, например: детонационные свойства, склонность к образованию отложений, противоизносные, антикоррозионные свойства и др. К экологическим - свойства, оказывающие влияния на окружающую среду, например: загрязнение воздуха продуктами, выделяющимися при работе двигателя, пожаро- и взрывоопасность и др.
Отдельные свойства топливо-смазочных материалов и их комплекс используют для характеристики качества продукта по показателям качества, например: октановое число топлива, температура застывания, температура вспышки и т.д. С помощью специальных испытаний можно произвести оценку качества, т.е. количественно определить качество топливо-смазочного материала. Качество топливо-смазочных материалов оценивают лабораторными (физико-химическими) и специальными методами.
Лабораторные методы используют при определении физико-химических показателей и для косвенной оценки отдельных функциональных свойств. Основным достоинством этих методов является то, что с их помощью можно выполнить дифференцированную оценку отдельных свойств топливо-смазочных материалов. Однако вследствие большой сложности и взаимосвязи процессов, происходящих в двигателе, лабораторные методы не дают возможности получить достаточно полное представление о работе топливо-смазочных материалов в реальных условиях.
Специальные методы предназначены для прямой оценки эксплуатационных свойств топливо-смазочных материалов. К ним относят эксплуатационные испытания и квалификационные методы испытаний.
Эксплуатационные испытания проводят на натурных объектах в условиях, максимально приближённых к реальным условиям эксплуатации. Основной недостаток - большая длительность (до нескольких лет). Проводят при допуске новых сортов, при подборе к конкретным двигателям и машинам, при подборе к конкретным условиям эксплуатации, при разработке новых двигателей и машин.
Квалификационные методы испытаний проводят на стендах с использованием модельных установок, натурных агрегатов, одноцилиндровых установок, полноразмерных двигателей. Эти методы по сравнению с лабораторными позволяют более точно и полно оценить эксплуатационные свойства топливо-смазочных материалов, а по сравнению с эксплуатационными методами - упростить условия и значительно сократить длительность испытаний. Кроме того, по сравнению с эксплуатационными квалификационные методы позволяют уменьшить, а иногда и устранить, влияние посторонних факторов на исследуемый показатель, следовательно, повысить точность и объективность испытаний. Используют для установления связей между показателями качества топливо-смазочных материалов и конструкцией двигателя, разработки требований к качеству топливо-смазочных материалов и т.д. Однако окончательное решение принимают на основании эксплуатационных испытаний.
Однако повышение величины показателя ведет к увеличению производственных затрат. Поэтому повышение качества необходимо рассматривать в связи с повышением стоимости производства продукта и экономией, при его использовании. Использование топливо-смазочных материалов с необоснованным запасом качества приводит к нерациональным расходам в нефтеперерабатывающей промышленности, а потребление топливо-смазочных материалов, не отвечающих требованиям эксплуатации, - к снижению надёжности двигателей, машин и механизмов.
Не менее важным, а иногда и основным, является условие устранения отрицательного экологического воздействия продуктов переработки топливо-смазочных материалов в двигателе.
Переработка нефти
Процесс разделения углеводородов нефти по температурам их кипения называется прямой перегонкой или дистилляцией. Полученные в результате перегонки отдельные фракции нефти называют дистиллятами. Прямая перегонка нефти при атмосферном давлении является обязательным первичным процессом переработки нефти.
Установки по первичной переработки нефти являются обязательными для всех заводов. Наличие других установок определяется свойствами перерабатываемой нефти, профилем продукции, вырабатываемой на заводе и другими факторами.
Современная установка по переработке нефти работает по непрерывному циклу. Установка состоит из атмосферной и вакуумной ректификационных колонн (рис. 12), в которых создаются условия, обеспечивающие достаточно полное испарение, вводимого в неё сырья. Этими условиями являются температура и давление. Нефть под давлением подают насосами в печь, где её нагревают до температуры 330…3500 С. Горячая нефть, вместе с парами попадает в среднюю часть атмосферной ректификационной колонны, где она вследствие снижения давления дополнительно испаряется и, испарившиеся углеводороды, отделяются от жидкой части нефти - мазута. Пары углеводородов поднимаются вверх, а жидкий остаток стекает вниз. По пути движения паров углеводородов устанавливаются ректификационные тарелки, на которых конденсируется часть паров углеводородов. Температура по высоте колонны уменьшается от максимальной в зоне ввода продукта до минимальной вверху. Таким образом, в ректификационной колонне по её высоте углеводороды нефти разделяют на фракции в зависимости от температуры кипения. Вверху колонны бензиновые фракции с температурой кипения от 30 до 180…2050 С, ниже легроиновый дистиллят (120…2400 С), далее керосиновый дистиллят (150…3150 С), дизельный дистиллят (150…3600 С), газойлевый (230…3600 С).
Мазут в зависимости от его состава можно использовать или в виде топлива, или подвергают дальнейшему разделению в вакуумной ректификационной колонне, или в качестве сырья используют на установке крекинга.
Перед поступлением в вакуумную ректификационную колонну мазут нагревают до 420…4300 С. Давление в вакуумной колонне 5300-7300 Па. Температура кипения в вакууме у углеводородов снижается, что позволяет испарить тяжелые углеводороды без разложения. При нагревании нефти выше 4300 С может начаться термическое разложение углеводородов. В вакуумной колонне вверху отбирают соляровый дистиллят (300…4000 С), ниже масляные фракции и далее полугудрон или гудрон, из которых путём глубокой очистки делают высоковязкие остаточные масла.
Сначала веретённый дистиллят, затем машинный или автоловый, и, последний, цилиндровый. В отличии от дистиллятных остаточные масла характеризуются большой малярной массой, а, следовательно, более высокой температурой кипения, плотностью и вязкостью. Большинство сложных кислородо-серосодержащих соединений также обладают большой малярной массой и остаётся в гудроне. Поэтому остаточные масла содержат эти соединения в большем количестве, чем дистиллятные.
Нефтепродукты первичной переработки нефти называют прямогонными.
Появление двигателей внутреннего сгорание привело к революции в нефтепереработке, т.к. потребовалось большое количество бензина.
Прямой перегонкой нефти можно получить только небольшое количество бензиновой фракции, которая непосредственно находится в нефти. Необходимо было повысить выход бензина из нефти за счёт превращения тяжёлых углеводородов с большим числом углеродных атомов молекуле в более лёгкие, с температурой кипения в пределах бензиновой фракции.
Рис. 12. Схема установки атмосферно-вакуумной перегонки нефти
1 – погруженные холодильники, 2 – теплообменники.
Процесс расщепления молекул тяжёлых углеводородов называют крекингом. Крекинг осуществляют путём нагрева обрабатываемого сырья до определённой температуры без доступа воздуха, без катализатора (термический крекинг) или в присутствии катализатора (каталитический крекинг). Крекинг позволил увеличить выход бензиновых фракций из нефти до 50...60 % против 20...25 %, получаемых прямой перегонкой.
Термический крекинг проходит при температура 470...5400 С и давлении 2...5 МПа. Вместе с расщеплением углеводородов при термическом крекинге протекают процессы синтеза и в результате создаются высокомолекулярные соединения. А также появляются отсутствующие в природной нефти химически неустойчивые непредельные углеводороды. Эти два фактора являются основным недостатком термического крекинга и причиной замены его другими процессами переработки нефти.
К таким процессам относится каталитический крекинг, который протекает при тех же температурах, что и термический крекинг, но при давлении близком к атмосферному и в присутствии катализатора. В качестве катализатора наибольшее распространение получили твёрдые алюмосиликатные катализаторы, в состав которых входят окись кремния и окись алюминия. Основной реакцией каталитического крекинга так же является расщепление сложных и больших молекул на более лёгкие с меньшим числом атомов углерода. Скорость расщепления значительно выше. Схема установки каталитического крегинга представлена на рис. 13.
Рис. 13. Схема установки каталитического крекинга с подвижными шариками
В условиях каталитического крекинга большое значения имеют вторичные превращения образующихся углеводородов, например, атомы водорода отщепляются с образованием ароматических углеводородов - реакция ароматизации; водород, выделяющийся в процессе ароматизации может вступать в реакцию с углеводородами олефинового ряда с насыщением двойных связей - реакция гидрогенизации; углеводороды с прямой цепочкой углеродных атомов могут изменять взаимное расположение атомов внутри молекул без изменения общего числа атомов - реакция изомеризации.
Каталитический крекинг осуществляют по различным схемам: с неподвижным слоем катализатора, подвижным сферическим катализатором и с пылевидным или микросферическим катализатором.
Гидрокрекинг (деструктивная гидрогенизация) – разновидность каталитического крекинга, проводимого в атмосфере водорода при давлении 20...30 МПа и температуре 470...5000 С. В этом процессе образующиеся непредельные углеводороды гидрируются и превращаются в предельные. Кроме того, имеющиеся в сырье сернистые и кислородные соединения, расщепляясь, реагируют с водородом с образованием сероводорода и воды. Сероводород отмывается слабощелочной водой. В результате можно получать высококачественное топливо из нефтяных остатков, углеводородных смол и др. веществ.
В промышленных условиях используют и некоторые другие термические процессы переработки. Например, при нагревании нефтяных остатков до 5500 С при атмосферном давлении происходит образование кокса и образуются жидкие углеводороды, которые можно использовать в качестве топлив. Далее, нагревание нефти до температуры 670...800 С0 (пиролиз) ведёт к значительному образованию газообразных углеводородов (этилен, пропилен и др.), из которых путём нефтехимического синтеза получают полиэтилен, полипропилен и т.д. В процесс пиролиза получают и жидкие углеводороды в основном ароматические.
Все процессы вторичной переработки нефти вместе с улучшением качества бензиновых фракций дают и увеличение выхода бензина.
Однако высокие требования к качеству бензина заставляют использовать специальные процессы, не дающие выхода бензина из нефти. В таких процессах сырье бензин и готовая продукция также бензин, но с лучшими эксплуатационными качествами.
К таким процессам относится риформинг.
Термический риформинг не нашёл широкого применения, т.к. при этом не удаётся резко улучшить эксплуатационные свойства бензина.
Наиболее перспективным является каталитический риформинг. Сущность его заключается в ароматизации бензиновых фракций в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Нафтеновые углеводороды теряют атом водорода и превращаются в ароматические (реакция ароматизации), парафиновые - в результате реакции изомеризации (циклизации) также образуют ароматические углеводороды, отщепляя водород. При этом также тяжелые углеводороды расщепляются на более мелкие, образующиеся непредельные углеводороды гидруются.
Основным катализатором является алюмоплатина – платины 0,1...1,0 %. Этот катализатор позволяет осуществлять риформирование при температуре 460...5100 С и давлении 4 МПа без регенерации в течение нескольких месяцев. Процесс называется - платформинг. Сырьё для платформинга обессеривают, т.к. платиновый катализатор «отравляется» сернистыми соединениями, содержащимися в бензинах прямой перегонки. Обессеривание производят гидроочисткой, используя водород, выделенный при риформировании бензина. Этот процесс выгоден и тем, что обеспечивает водородом процессы гидроочистки топлив и масел.
Сырьё (бензиновая фракция прямой перегонки) нагревается в теплообменниках и нагревательной печи 1 до 380...4200 С и поступает в реактор, где под давлением 3,5 МПа и при воздействии алюмокобальтомолибденового катализатора подвергается гидроочистке. Очищенное сырье после освобождения от сероводорода, углеводородных газов и воды нагревается в печи 1 до 500...5200 С и поступает в реакторы, где под давлением свыше 4,0 МПа происходит его реформирование. Полученный катализат после отделения водосодержащего газа и стабилизации может применяться для получения товарных бензинов. Режимы проведения риформинга, а также состав и свойства катализатора различаются. При проведении процесса в мягких условиях получают бензин с меньшей детонационной стойкостью, чем при жестком режиме платформинга.
В промышленных условиях сырье для изомеризации служат легкие бензиновые фракции прямой перегонки нефти, в составе которых преобладают углеводороды с пятью-шестью атомами углерода в молекуле нормального строения. Изомеризацию проводят в присутствии хлористого алюминия, платины, палладия и т.д. Продукт является высококачественным компонентом товарных бензинов.
В процессе переработки нефти всегда образуются углеводородные газы, которые стараются максимально использовать, например, перерабатывая в жидкие топлива и их компоненты.
Для этого чаще всего применяют процесс алкилирования, который сводится к присоединению олефинового углеводорода к парафиновому или ароматическому с образованием насыщенной молекулы более высокого молекулярного веса. В результате получают широкую бензиновую фракцию - алкилат (алкилирование изобутана в основном бутиленами), которая является высококачественным компонентом товарных бензинов. Катализатором является серная кислота и фтористый водород (при алкилировании парафиновых углеводородов).
Кроме алкилирования, при переработке газов используют реакцию полимеризации.
Полимеризацией называют химическую реакцию соединения двух и большего числа одинаковых молекул в одну более крупную. При этом отщепления каких-либо атомов от молекул, вступающих в реакцию, не происходит.
В этих реакциях способны участвовать лишь непредельные углеводороды, поэтому сырье для полимеризации служат газы, богатые олефиновыми углеводородами. Наиболее распространенный катализатор - фосфорная кислота.
На рис. 14 показаны схема получения нефтепродуктов.
Все продукты переработки нефти, прежде чем пойти на приготовление товарных топлив и масел, проходят специальную очистку.
.
Рис. 14. Схема получения топлив и масел из нефти
Очистка полуфабрикатов топлив и масел
Для удаления примесей полуфабрикаты топлив и масел подвергают очистке. При этом выбор метода очистки зависит от исходного качества очищаемого продукта и от требований к эксплуатационным свойствам готовых товарных продуктов, которые необходимо получить. Глубина и способ очистки являются важным условием обеспечения высоких эксплуатационных качеств топливо-смазочных материалов.
Щелочная очистка (очистка натриевой щелочью). Применяется для удаления из нефтяных дистиллятов (рис. 15) кислородных соединений (нефтяных кислот, фенолов), сернистых соединений (сероводорода, меркаптанов, серы), и для нейтрализации серной кислоты и продуктов её взаимодействия с углеводородами (сульфокислот, эфиров серной кислоты) остающихся в нефтепродукте после его сернокислотной очистки
RCOOH + NaOH RCOONa + H2O
нафтеновые соли нафтеновых
кислоты кислот
ROH + NaOH RONa + H2O
Фенолы феноляты
H2S + 2NaOH Na2S + 2H2O
сероводород сернистый натрий
RSH + NaOH RSNa + H2O
меркаптаны меркаптиды
Рис. 15. Химические реакции при щелочной очистке нефтяных дистиллятов
Образующиеся вещества растворяются в воде и удаляются из очищенного продукта вместе с водным раствором щелочи. Кроме того, можно произвести водную промывку продукта. Очистка щелочью используется при производстве бензинов, дизельных топлив и некоторых видов масел.
Очистка серной кислотой. Применяется для удаления непредельных углеводородов, асфальто-смолистых веществ, азотистых и сернистых соединений, нафтеновых кислот. Очистке 96...98 % раствором серной кислоты подвергают масла. Топлива не обрабатывают. Различают кислотно-щелочную и кислотно-контактную очистки. При кислотно-щелочной очистке после реакции с кислотой полуфабрикат нейтрализуют натриевой щелочью с промывкой водой и просушиванием паром. Осадок в виде смолистой массы (кислого гудрона) удаляется. Кислотно-контактная очистка заключается в последовательной обработке полуфабриката серной кислотой и отбеливающей землей.
Для повышения эффективности применяют обработку нефтепродукта в пропановом растворе. Пропан уменьшает вязкость нефтепродуктов и растворимость в них смолисто-асфальтовых веществ, что увеличивает эффективность очистки. После обработки кислотой улучшаются вязкостно-температурные свойства, уменьшается коксуемость нефтепродуктов.
Селективная очистка (очистка при помощи растворителей) основана на различной растворяющей способности некоторых веществ в отношении углеводородов различного строения и неуглеводородных примесей. Применяется для очистки масел. Удаляются асфальто-смолистые соединения, полициклические углеводороды, часть сернистых соединений, непредельные углеводороды и т.д.
Эффективность такой очистки зависит от качества растворителя. Растворитель должен как можно полнее растворять в себе нежелательные компоненты и как можно меньше затрагивать полезные углеводороды.
После селективной очистки (фенолом, фурфуролом, крезолом и др.) получают рафинат (очищенное масло) и экстракт (растворитель с извлеченными из масла веществами). После удаления растворителя экстракт идет в качестве добавки в трансмиссионные масла, а рафинат - на приготовление масел.
При селективной очистке улучшаются вязкостно-температурные свойства, уменьшается плотность и коксуемость, понижается склонность к образованию отложений в двигателе.
Депарафинизация. Применяется для удаления углеводородов с высокими температурами застывания, в основном парафинового ряда, так как последние при охлаждении переходят в кристаллическое состояние. Депарафинизации подвергают дизельные топлива и масла.
Один из главных методов депарафинизации это вымораживание, заключающийся в охлаждении полуфабриката до температуры застывания, после чего кристаллы отделяются на фильтрах. Недостатком этого метода является замораживание нефтепродукта до температуры значительно ниже температуры застывания, что связано с технологическими трудностями.
Этого недостатка лишен способ депарафинизации с растворителем, в качестве которого используют жидкий пропан. Полуфабрикат смешивают с растворителем, постепенно охлаждают примерно до 300 С и затем твёрдые углеводороды отфильтровывают от раствора, а растворитель отгоняют от нефтепродукта.
Распространен метод депарафинизации карбамидом без применения холода. Карбамид способен создавать комплексные соединения с углеводородами парафинового ряда. После чего эти комплексы отделяют от остальных углеводородов, разлагают и карбамид регенерируют.
Гидроочистка. Применяется для удаления сернистых, азотистых и кислородных соединений путём восстановления этих соединений водородом при повышенных температурах и давлении в присутствии катализатора в газообразные продукты - сероводород, аммиак – и воду, которые легко удаляются.
Гидроочистке подвергают дизельные топлива и моторные масла перед платформингом для обессеривания.
Адсорбционная очистка (контактная очистка, очистка отбеливающими землями). Некоторые высокопористые вещества (адсорбенты) способны удерживать на поверхности нежелательные примеси, содержащиеся в нефтепродуктах. Эта очистка распространена при производстве масел и дизельных топлив. При этом удаляют смолы, нафтеновые кислоты, кислородосодержащие соединения, сульфокислоты, остатки минеральной кислоты и селективного растворителя. В качестве адсорбентов используют природные глины, силикагель, синтетические алюмокислоты, активированную окись алюминия.
Эту очистку применяют в качестве заключительной.
Все перечисленные выше способы очистки применяют для улучшения качества нефтепродуктов, их эксплуатационных свойств. В зависимости от требования к качеству нефтепродукт подвергают очистке одним способом, или двумя, или многими, применяя их в той или иной последовательности. Однако даже самые совершенные способы очистки не гарантируют получения высококачественных топлив и масел.
Наиболее эффективным способом улучшения эксплуатационных свойств является добавление к нефтепродуктам присадок. Эффективность присадок всегда выше при добавлении в очищенные нефтепродукты.
Дата добавления: 2021-01-26; просмотров: 375;