Многокорпусные выпарные установки


 

В современных выпарных установках выпариваются очень большие количества воды. Выше было показано, что в однокорпусном аппарате на выпаривание 1 кг воды требуется более 1 кг греющего пара. Это привело бы к чрезмерно большим расходам его. Однако расход пара на выпаривание можно значительно снизить, если проводить процесс в многокорпусной выпарной установке. Как указывалось, принцип действия ее сводится к многократному использованию тепла греющего пара, посту­пающего в первый корпус установки, путем обогрева каждого последую­щего корпуса (кроме первого) вторичным паром из предыдущего корпуса.

Схема многокорпусной вакуум-выпарной установки, работающей при прямоточном движении греющего пара и раствора, показана на рис. XIII-2.

Установка состоит из нескольких (в данном случае трех) корпусов. Исходный раствор, обычно предварительно нагретый до температуры кипения, поступает в первый корпус, обогреваемый свежим (первичным) паром. Вторичный пар из этого корпуса направляется в качестве греющего во второй корпус, где вследствие пониженного давления раствор кипит при более низкой температуре, чем в первом.

Ввиду более низкого давления во втором корпусе раствор, упаренный в первом корпусе, перемещается самотеком во второй корпус и здесь охла­ждается до температуры кипения в этом корпусе. За счет выделяющегося при этом тепла образуется дополнительно некоторое количество вторич­ного пара. Такое явление, происходящее во всех корпусах установки, кроме первого, носит название самоиспарения раствора.

Аналогично упаренный раствор из второго корпуса перетекает самотеком в третий корпус, который обогревается вторичным паром из второго корпуса.

Предварительный нагрев исходного раствора до температуры кипения в первом корпусе производится в отдельном подогревателе 4, что позво­ляет избежать увеличения поверхности нагрева в первом корпусе.

Рис.XIII-2.

Вторичный пар из последнего корпуса (в данном случае из третьего) отводится в барометрический конденсатор 5, в котором при конденсации пара создается требуемое разрежение. Воздух и неконденсирующиеся газы, попадающие в установку главным образом с охлаждающей водой (в конденсаторе), а также через неплотности трубопроводов и резко ухуд­шающие теплопередачу, отсасываются через ловушку-брызгоулавливатель 6 вакуум-насосом 7.

С помощью вакуум-насоса поддерживается также устойчивый ва­куум, так как остаточное давление в конденсаторе может изменяться с ко­лебанием температуры воды, поступающей в конденсатор.

Необходимым условием передачи тепла в каждом корпусе должно быть наличие некоторой полезной разности температур, определяемой раз­ностью температур греющего пара и кипящего раствора. Вместе с тем, дав­ление вторичного пара в каждом предыдущем корпусе должно быть больше его давления в последующем. Эти разности давлений создаются при избы­точном давлении в первом корпусе, или вакууме в последнем корпусе, или же при том и другом одновременно.

Основные схемы многокорпусных установок. Применяемые схемы мно­гокорпусных выпарных установок различаются по давлению вторичного пара в последнем корпусе. В соответствии с этим признаком установки де­лятся на работающие под разрежением и под избыточ­ным давлением.

Наиболее распространены выпарные установки первой группы. По­мимо установки, показанной на рис. XIII-2, в промышленной практике применяют установки аналогичного типа, обладающие повышенной эко­номичностью за счет использования тепла пара низкого потенциала. Так, например, иногда обогрев первого корпуса производят отработанным па­ром из паровых турбин, который является в данном случае первичным паром.

Дросселированный свежий пар, например из ТЭЦ, добавляется только для поддержания стабильного режима работы выпарной установки при колебаниях нагрузки турбины.

В выпарных установках, работающих под некоторым избыточным дав­лением вторичного пара в последнем корпусе, этот пар может быть шире использован на посторонние нужды, т.е. в качестве экстра-пара. Наряду с этим повышение давления вторичного пара в последнем корпусе умень­шает возможную кратность использования свежего (первичного) пара, греющего первый корпус.

При работе под избыточным давлением требуется несколько большая толщина стенок аппаратов, но установка в целом упрощается, так как отпадает необходимость в постоянно действующем конденсаторе паров (небольшой конденсатор используют лишь в период пуска установки).

В выпарных установках под давлением труднее поддерживать постоян­ный режим работы, чем в установках под вакуумом, и для этой цели требуется автоматическое регулирование давления пара и плотности упа­ренного раствора. Для повышения устойчивости режима работы уста­новок под давлением используют различные схемы.

Выбор давления вторичного пара в последнем корпусе установки зави­сит от соотношения между количеством тепла, которое может отдать этот пар, и количеством тепла пара низкого потенциала, требующегося на другие производственные нужды. Оптимальное давление вторичного пара в последнем корпусе можно установить в каждом конкретном случае путем технико-экономического расчета.

Многокорпусные выпарные установки различаются также по взаим­ному направлению движения греющего пара и выпаривае­мого раствора. Кроме наиболее широко распространенных установок с прямоточным движением пара и раствора (рис. XIII-2), применяются также противоточные выпарные установки, в которых греющий пар и выпариваемый раствор перемещаются из корпуса в корпус во взаимно противоположных направлениях (рис. XIII-3).

Исходный раствор подается насосом в последний по ходу греющего пара (третий) корпус, из которого упаренный раствор перекачивается во второй корпус, и т.д., причем из первого корпуса удаляется оконча­тельно упаренный раствор. Свежий (первичный) пар поступает в первый корпус, а вторичный пар из этого корпуса направляется для обогрева второго корпуса, затем вторичный пар из предыдущего корпуса исполь­зуется для обогрева последующего. Из последнего корпуса вторичный пар удаляется в конденсатор.

Отметим одно существенное достоинство многокорпусных выпарных установок, работающих по противоточной схеме.

В первом корпусе выпарной прямоточной установки (рис. XIII-2) наименее концентрированный раствор получает необходимое для выпари­вания тепло от греющего пара наиболее высоких рабочих параметров, а в последнем корпусе наиболее концентрированный (и наиболее вязкий) раствор выпаривается при помощи вторичного пара наиболее низких па­раметров. Таким образом, от первого корпуса к последнему (по ходу рас­твора) повышается концентрация и понижается температура выпаривае­мого раствора, что приводит к возрастанию его вязкости. В результате коэффициенты теплопередачи уменьшаются от первого корпуса к последнему.

XIII-3
­

В многокорпусных противоточных установках (рис. XIII-3) в первом корпусе наиболее концентрированный раствор выпаривается за счет тепла пара наиболее высоких параметров, в то время как в последнем корпусе исходный раствор самой низкой концентрации получает тепло от вторич­ного пара, имеющего наиболее низкие давления и температуру. Поэтому при противотоке коэффициенты теплопередачи значительно меньше изме­няются по корпусам, чем при прямотоке.

Однако необходимость перекачивания выпариваемого раствора из корпусов, где давление меньше, в корпуса с более высоким давлением яв­ляется серьезным недостатком противоточной схемы, так как применение промежуточных насосов (насосы 4 и 5 на рис. XIII-3) связано со значитель­ным возрастанием эксплуатационных расходов.

Противоточные выпарные установки используют при выпаривании растворов до высоких конечных концентраций, когда в последнем корпусе (по ходу раствора) возможно нежелательное выпадение твердого вещества. Кроме того, по такой схеме выпаривают растворы, вязкость которых резко возрастает с увеличением концентрации раствора.

По схеме с параллельным питанием корпусов (рис. XIII-4) исходный раствор поступает одновременно во все три корпуса установки. Упаренный раствор, удаляемый из всех корпусов, имеет одина­ковую конечную концентрацию.

Установки такой схемы используют, главным образом, при выпаривании насыщенных растворов, в которых находятся частицы выпавшей твердой фазы (что затрудняет перемещение выпариваемого раствора из корпуса в корпус), а также в тех процессах выпаривания, где не требуется значительного повышения концентрации раствора.

Рис.XIII-4.



Дата добавления: 2016-10-18; просмотров: 4626;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.