ОСНОВЫ ТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ
Содержание
Список принятых сокращений
Введение
1. Общая характеристика объектов измерений
2. Понятие видов и методов измерений
3. Классификация и общая характеристика средств измерений
4. Метрологические свойства и метрологические характеристики средств измерений
5. Основы теории и методики измерений
Заключение
Список использованных источников и литературы
Список принятых сокращений
ФВ - физические величины
SI - (начальные буквы французского наименования «Systeme International d' Unites»)
ИСО - Международная комиссия по стандартизации
СИ - средство измерений
СО - свойства веществ
ИП - преобразователи
АП - аналоговые преобразователи
ЦАП - цифро - аналоговые преобразователи
АЦП - аналого - цифровые преобразователи
МВИ - методика выполнения измерений
ТР - технический регламент
ВВЕДЕНИЕ
Целью данного сообщения является рассмотрение основы технических измерений.
Достижение обозначенной цели предполагает решение следующего комплекса задач:
· Общая характеристика объектов измерений
· Понятие видов и методов измерений
· Классификация и общая характеристика средств измерений
· Метрологические свойства и метрологические характеристики средств измерений
· Основы теории и методики измерений;
Предметами исследования является:
· Общая характеристика объектов измерений
· Понятие видов и методов измерений
· Классификация и общая характеристика средств измерений
· Метрологические свойства и метрологические характеристики средств измерений
· Основы теории и методики измерений;
Объектом являются физические величины, методы и средства, виды измерений, методика выполнения измерений.
Для осуществления поставленной задачи были использованы следующие общенаучные методы исследования: сравнение, анализ, синтез, системный и функциональный подходы.
Обоснование структуры реферата
Лекция состоит из следующих параграфов:
Основным объектом измерения в метрологии являются физические величины.
Физическая величина (краткая форма термина — «величина») применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.). Cуществуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные свойства материального мира. Механика базируется на трех основных величинах, теплотехника - на четырех, физика - на семи.
ГОСТ 8.417 устанавливает семь основных физических величин - длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.
Измеряемые величины имеют качественную и количественную характеристики.
Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim. Размерность основных величин - длины, массы и времени — обозначается соответствующими заглавными буквами: dim l = L; dim m = М; dim t = Т.
Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.
Простейший способ получения информации, который позволяет составить некоторое представление о размере измеряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например, оценивают по четырехбалльной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по двенадцатибалльной шкале, называемой международной сейсмической шкалой).
Недостатком реперных шкал является неопределенность интервалов между реперными точками. Например, по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу — алмазу, а другая наиболее мягкому — тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости.
Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул; более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда. По шкале Цельсия интервал между этими реперами равен 273,16°С. По шкале отношений можно определить не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L = 1 м = 100 см = 1000 мм. Отмеченные три варианта являются значениями измеряемой величины — оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.
§ 1 Общая характеристика объектов измерений
Основным объектом измерения в метрологии являются физические величины (ФВ). ФВ применяются для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.)
Совокупность ФВ, образованная в соответствии с принятыми принципами (когда одни величины принимаются за независимые, а другие являются их функциями), называется системой физических величин.
Развитие промышленного производства вызвало необходимость унификации размеров ФВ, создание системы единиц. Первой системой единиц ФВ была метрическая система. Вначале она была введена во Франции (1840), затем в других странах (Великобритании, США, России и пр.). Наряду с метрической системой в этих и других странах применялись и применяются в настоящее время и национальные системы [1, c. 160].
В Российской Федерации применяются в настоящее время единицы величин Международной системы единиц, обозначаемой сокращенно SI (начальные буквы французского наименования «Systeme International d' Unites»). На территории нашей страны SI действует с 1 января 1982 г. в соответствии с ГОСТ 8.417 «ГСИ. Единицы физических величин». В качестве основных единиц приняты:
- метр,
- килограмм,
- секунда,
- ампер,
- кельвин,
- моль и кандела.
Единицы ФВ делятся на системные и внесистемные. Системная единица - единица ФВ, входящая в одну из принятых систем. Внесистемная единица - единица ФВ, не входящая ни в одну из принятых систем.
Внесистемные единицы по отношению к единицам SI разделяют на четыре вида:
· допускаемые наравне с единицами SI (например, тон на, градус, минута, секунда, литр);
· допускаемые к применению в специальных областях (например, световой год - единица длины в астрономии; диоптрия - единица оптической силы в оптике и т.д.);
· временно допускаемые к применению наравне с единицами SI (например, карат - единица массы в ювелирно деле). Эти единицы должны изыматься из употребления в соответствии с международными соглашениями;
· изъятые из употребления (например, миллиметр ртутного столба - единица давления; лошадиная сила — единица мощности и некоторые другие).
Измеряемые величины имеют качественную и количественную характеристики.
Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim . Размерность основных величин -длины, массы и времени - обозначается соответствующими заглавными буквами:
dim l =L; dim m = М; dim t=T
Размерность производной величины выражается через размерность основных величин с помощью степенного одночлена:
dim X = La *Мb * Тc (1)
где L, М, Т - размерности соответствующих основных физических величин; а,b,c - показатели размерности (показатели степени, в которую возведены размерности основных величин).
Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем, ели все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость) и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей и напряжений).
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.
Простейший способ получения информации, который дозволяет составить некоторое представление о размере измеряемой величины, заключается в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?». При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в Порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например, оценивают по четырехбалльной реперной шкале, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины (интенсивность землетрясений измеряется по 12-балльной шкале, называемой международной сейсмической шкалой).
Недостатком реперных шкал является неопределенность интервалов между реперными точками. Например, по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу — алмазу, а другая наиболее мягкому — тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости. Так, если твердость алмаза по шкале 10, а кварца — семь, то это не означает, что первый тверже второго в 1,4 раза. Определение твердости путем вдавливания алмазной пирамиды (метод Хрущева) показывает, что твердость алмаза — 10 060, а кварца — 1120, т.е. в девять раз больше.
Более совершенна в этом отношении шкала интервалов. Примером ее может служить шкала измерения времени, которая разбита на крупные интервалы (годы), равные периоду обращения Земли вокруг Солнца; на более мелкие (сутки), равные периоду обращения Земли вокруг своей оси. По шкале интервалов можно судить не только о том, что один размер больше другого, но и том, насколько больше. Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого. Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсчета может быть выбрано произвольно.
Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул; более низкой температуры быть не может. Второй ре перной точкой служит температура таяния льда. По шкалеЦельсия интервал между этими реперами равен 273,16о СПо шкале отношений можно определить не только, насколько один размер больше или меньше другого, но и во сколько раз он больше или меньше.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L = 1 м = 100 см = 1000 мм. Отмеченные три варианта являются значениями измеряемой величины оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.
Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения
Q=X[Q], (2)
где [Q] — значение величины; X — числовое значение измеряемой величины в принятой единице; Q — выбранная для измерения единица.
Допустим, измеряется длина отрезка прямой в 10 см [С помощью линейки, имеющей деления в сантиметрах и миллиметрах. Для данного случая Q1 =10 см при X1 = 10 и Q1 = 1 см; Q2 =100 мм при X, - 100 и Q2 = Q1 так как 10 см = 100 мм. Применение различных единиц (1 см и 1 мм) не привело к изменению числового значения результата измерений.
Основным объектом измерения в метрологии являются физические величины.
§ 2 Понятие видов и методов измерений
Цель измерения - получение значения этой величины в форме, наиболее удобной для пользования. С помощью измерительного прибора сравнивают размер величины, информация о котором преобразуется в перемещение указателя, с единицей, хранимой шкалой этого прибора.
Измерения могут быть классифицированы:
1) по числу измерений в ряду измерений - однократные, многократные (при четырех измерениях и более);
2) характеру изменения получаемой информации - статические (измерение неизменной во времени физической величины, например измерение длины детали при нормальной температуре или измерение размеров земельного участка), динамические (измерение изменяющейся по размеру физической величины, например измерение переменного напряжения электрического тока, измерение расстояния до уровня земли со снижающегося самолета), статистические (измерения величины, значение которой может рассматриваться непостоянным в течение времени ] измерения, например шумовые сигналы);
3) способу получения результатов измерений — абсолютные (измерение, основанное на прямых измерениях величин и (или) использовании значений физических констант, например измерение силы F основано на измерении основной величины массы m и использовании физическом постоянной — ускорения свободного падения g и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы);
4) способу получения информации (по виду) - прямые (измерение, при котором искомое значение физической величины получают непосредственно от СИ, например измерение массы на весах, длины детали микрометром), косвенные ( измерение, при котором искомое значение величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной, например определение твердости (НВ) металлов путем вдавливания стального шарика определенного диаметра (D) с определенной нагрузкой (Р) и получения при этом определенной глубины отпечатка (h : НВ = P/(πD х h));
5) способу комбинирования измеряемых величин - совокупные (искомое значение определяют решением системы уравнений по результатам измерений нескольких однородных величин (например, значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и результатам измерений массы различных сочетаний гирь), совместные (проводимые одновременно измерения двух или нескольких неоднородных величин для определения зависимости между ними (например, коэффициент загрузки склада определяется путем измерения массы товаров и занимаемой ими полезной складской площади);
6) по характеристике точности — равноточные (ряд измерений какой-либо величины, выполненных одинаковыми по точности СИ и в одних и тех же условиях), неравноточные (ряд измерений, выполненных несколько различными по Точности СИ и (или) в несколько разных условиях).
Метод измерений - прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений.
Методы измерений классифицируют по нескольким признакам:
По общим приемам получения результатов измерений различают:
1) прямой метод измерений;
2) косвенный метод измерений.
Первый реализуется при прямом измерении, второй - при косвенном измерении (такие измерения описаны выше) [1, c. 164-165].
По условиям измерения различают контактный и бесконтактный методы измерений.
Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром). Бесконтактный метод измерений основан на том, что чувствительный элемент прибора не приводится в контакт объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).
Исходя из способа сравнения измеряемой величины с ее единицей различают методы непосредственной оценки и сравнения с мерой (таблица 1)
МЕТОДЫ ИЗМЕРЕНИЙ
Метод | Сущность | Примеры применения |
1.Непосрдственной оценки | Значение величины определяется по отсчетному устройству | Измерение давления пружинным манометром, массы на весах, силы электрического тока амперметром |
2.Сравнение с мерой | Сравнение измеряемой величины с воспроизводимой мерой | Измерение массы на рычажных весах с уравновешиванием гирей |
2.1.Нулевой | Результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля | Измерение электрического сопротивления электрическим мостом |
2.2.Дифференциальный | Измерение разницы измеряемой величины и известной величины, воспроизводимой мерой | Измерения, выполняемые при проверке мер длины сравнением с образцовой мерой на компараторе. (компаратор - средство сравнения, предназначенное для сличения мер однородных величин) |
2.3. Замещения | Действие измеряемой величины замещается образцовой | Взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашу весов (метод Борда) |
2.4. Совпадений | При измерении разности сравниваемых величин используется совпадение отметок шкал или периодических сигналов | Измерение длины штангенциркулем, частоты вращения стробоскопом |
2.5. Противопоставления | Измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения | Измерение массы на равноплечих весах с помещением измеряемой массы и уравновешиванием ее гирь на двух чашках весов |
§ 3 Классификация и общая характеристика средств измерений
Средством измерений (СИ) называют техническое средство (или их комплекс), используемое при измерениях и имеющее нормированные метрологические характеристики. В отличие от таких технических средств, как индикаторы, предназначенных для обнаружения физических свойств (компас, лакмусовая бумага, осветительная электрическая лампочка), СИ позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы — с помощью весов с гирями). Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера (измерение силы тока амперметром). Для облегчения сравнения еще на стадии изготовления прибора отклик на известное воздействие фиксируют на кале отсчетного устройства, после чего наносят на шкалу деления в кратном и дольном отношении. Описанная процедура называется градуировкой шкалы. При измерении она позволяет по положению указателя получать результат сравнением непосредственно по шкале отношений. Итак, СИ (за исключением некоторых мер - гирь, линеек) в простейшем случае производят две операции: обнаружение физической величины; сравнение неизвестного размера с известным или сравнение откликов на воздействие известного и неизвестного размеров.
Другими отличительными признаками СИ являются, во-первых, «умение» хранить (или воспроизводить) единицу физической величины; во-вторых, неизменность размера хранимой единицы. Если же размер единицы в процессе измерений изменяется более, чем установлено нормами, то с помощью такого средства невозможно получить результат с требуемой точностью. Отсюда следует, что измерять можно только тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени).
СИ можно классифицировать по двум признакам:
· конструктивное исполнение;
· метрологическое назначение.
По конструктивному исполнению СИ подразделяют:
1. на меры,
2. измерительные преобразователи;
3. измерительные приборы,
4. измерительные установки,
5. измерительные системы,
6. технические системы и устройства с измерительными функциями.
Меры величины - СИ, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров. Различают меры: однозначные (гиря 1 кг, калибр, конденсатор постоянной емкости); многозначные (масштабная линейка, конденсатор переменной емкости); наборы мер (набор гирь, набор калибров). Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называется магазином мер. Примером такого набора может быть магазин электрических сопротивлений, магазин индуктивностей. Сравнение с мерой выполняют с помощью специальных технических средств - компараторов (рычажные весы, измерительный мост и т.д.).
К однозначным мерам можно отнести стандартные образцы (СО). Существуют стандартные образцы состава и стандартные образцы свойств.
СО состава вещества (материала) - стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).
СО свойств веществ (материалов) - стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.
Новые СО допускаются к использованию при условии прохождения ими метрологической аттестации. Указанная процедура - это признание этой меры, узаконенной для применения на основании исследования СО. Метрологическая аттестация проводится органами метрологической службы.
В зависимости от уровня признания (утверждения) и сферы применения различают категории СО - межгосударственные, государственные, отраслевые и СО предприятия (организации).
В практике метрологическими службами используются СО разной категории для выполнения различных задач.
Измерительные преобразователи (ИП) - СИ, служащие для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований.
По характеру преобразования различают аналоговые (АП), цифроаналоговые (ЦАП), аналого-цифровые (АЦП) преобразователи. По месту в измерительной цепи различают первичные (ИП, на который непосредственно воздействует измеряемая физическая величина) и промежуточные (ИП, занимающий место в измерительной цепи после первичного ИП) преобразователи
Конструктивно обособленный первичный ИП, от которого поступают сигналы измерительной информации, является датчиком. Датчик может быть вынесен на значительное расстояние от СИ, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают информацию о температуре, давлении, влажности и других параметрах атмосферы.
Если преобразователи не входят в измерительную цепь и их метрологические свойства не нормированы, то они не относятся к измерительным. Таковы, например, силовой трансформатор в радиоаппаратуре, термопара в термоэлектрическом холодильнике.
Измерительный прибор - СИ, предназначенное для получения значений измеряемой физической величины установленном диапазоне. Прибор, как правило, содержит устройство для преобразования измеряемой величины и ее индикации в форме, наиболее доступной для восприятии. Во многих случаях устройство для индикации имеет шкалу) со стрелкой или другим устройством, диаграмму с пером или цифроуказатель, с помощью которых может быть произведен отсчет или регистрация значений физический величины. В случае сопряжения прибора с мини-ЭВМ отсчет может производиться с помощью дисплея.
По степени индикации значений измеряемой величины измерительные приборы подразделяют на показывающие и регистрирующие. Показывающий прибор допускает только отсчитывание показаний измеряемой величины (микрометр, аналоговый или цифровой вольтметр). В регистрирующем приборе предусмотрена регистрация показаний - в форме диаграммы, путем печатания показаний (термограф или, например, измерительный прибор, сопряженный с ЭВМ, дисплеем и устройством для печатания показаний).
Измерительная установка - совокупность функционально объединенных элементов - мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерения одной или нескольких физических величин и расположенных в одном месте. Примером являются установка для измерения удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов. Измерительную установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом.
Измерительная система - совокупность функционально объединенных элементов - мер, измерительных приборов, Измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система Для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга.
Технические системы и устройства с измерительными функциями - технические системы и устройства, которые наряду с основными выполняют и измерительные функции. Они имеют один или несколько измерительных каналов.
Примерами таких систем являются игровые автоматы, диагностическое оборудование.
По метрологическому назначению все СИ подразделяются на два вида: рабочие СИ и эталоны.
Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть: 1) лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях; 2) производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров; 3) полевыми, используемыми непосредственно при эксплуатации таких технических устройств как самолеты, автомобили, речные и морские суда и др.
К каждому виду РСИ предъявляются специфические требования:
· к лабораторным - повышенная точность и чувствительность;
· к производственным - повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам;
· к полевым - повышенная стабильность в условиях резкого перепада температур, высокой влажности.
Эталоны являются высокоточными СИ, а поэтому пользуются для проведения метрологических измерений в качестве средств передачи информации о размере единицы Размер единицы передается «сверху вниз», от более точных СИ к менее точным «по цепочке»: первичный эталон - вторичный эталон - рабочий эталон 0-го разряда - рабочий эталон 1-го разряда... - рабочее средство измерений.
Передача размера осуществляется в процессе поверки СИ. Целью поверки является установление пригодности СИ к применению.
Соподчинение СИ, участвующих в передаче размера единицы от эталона к РСИ, устанавливается в поверочных схемах СИ.
Эталонная база в дальнейшем будет развиваться в количественном и главным образом в качественном отношении. Перспективно создание многофункциональных эталонов, т.е. эталонов, воспроизводящих на единой конструктивной и метрологической основе не одну, а несколько единиц физических величин или одну единицу, но в широком диапазоне измерений. Так, метрологические институты страны создают единый эталон времени, частоты и длины, который позволит, кстати, уменьшить погрешность воспроизведения единицы длины до 1 • 10-11.
Если технический уровень первичных эталонов в России благодаря успехам науки и энтузиазму ученых можно оценить как вполне удовлетворительный, то состояние парка СИ, находящихся в практическом обращении, прежде всего рабочих эталонов и РСИ, внушает тревогу. Если в 1980-х гг. к обновления отечественной измерительной техники, как правило, составлял пять-шесть лет (для сравнения: в США и Японии - не более трех лет), то наблюдаемый сейчас регресс в области отечественного приборостроения еще больше увеличил сроки обновления рабочих эталонов и РСИ, что ведет значительному старению измерительной техники .
Другой проблемой отечественных производителей СИ является высокая стоимость их разработок в сравнении с зарубежными фирмами. Для преодоления традиционного отстаивания необходимо также в отечественных приборах предусматривать: высокую степень автоматизации на базе микропроцессорной технологии, быстродействие, высокую надежность, пониженные массу, габариты и энергопотребление, высокий уровень эстетики и эргономики.
Многообразие СИ обусловливает необходимость применения специальных мер по обеспечению единства измерений.
§ 4 Метрологические свойства и метрологические
характеристики средств измерений
Метрологические свойства СИ - это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.
Метрологические характеристики, устанавливаемые нормативным документом, называют нормируемыми метрологическими характеристиками.
Все метрологические свойства СИ можно разделить на две группы:
1) свойства, определяющие область применения СИ;
2) свойства, определяющие точность (правильность и прецизионность) результатов измерения.
К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности.
Диапазон измерений - область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.
Порог чувствительности - наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.
К метрологическим свойствам второй группы относя два главных свойства точности: правильность и прецезионность р езультатов. (прецизионность - степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях).
К метрологическим характеристикам, определяющих точность относятся погрешности СИ.
Погрешность средства измерений - это разность между показаниями СИ и действительным значением измеряемой величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением. Для рабочего СИ за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, - значение величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значение СИ, которое является в поверочной схеме вышестоящим по отношению к подчиненному СИ, подлежащему поверке:
∆Хп = Хп -Х0 (3)
где ∆Хп — погрешность поверяемого СИ; Хп — значение той же самой величины, найденное с помощью поверяемого СИ; Х0 — значение СИ, принятое за базу для сравнения, т.е. действительное значение.
Погрешности СИ могут быть классифицированы по ряду признаков, в частности:
· по способу выражения - абсолютные, относительные;
· по характеру проявления - систематические, случайные;
· по отношению к условиям применения - основные, дополнительные.
Наибольшее распространение получили метрологические свойства, связанные с первой группировкой - с абсолютными и относительными погрешностями. Определяемая по формуле (3) ∆Хп является абсолютной погрешностью. Однако в большей степени точность СИ характеризует относительная погрешность (δ), т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ:
δ =100*∆Хп /Хо
Точность может быть выражена обратной величиной относительной погрешности - 1/ δ. Если погрешность δ = 0,1%, или 0,001=10-3 , то точность равна 103.
В стандартах нормируют характеристики, связанные с другими погрешностями.
Систематическая погрешность - составляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность градуировки, в частности погрешность показаний прибора с круговой шкалой и стрелкой, если ось последней смещена на некоторую величину относительно центра шкалы. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок. При химическом анализе систематическая погрешность проявляется в случаях, когда метод измерений не позволяет полностью выделить элемент или когда наличие одного элемента мешает определению другого.
При нормировании систематической составляющей погрешности СИ устанавливают пределы допускаемой систематической погрешности СИ конкретного типа - D.
Величина систематической погрешности определяет такое метрологическое свойство, как правильность измерений СИ, - это первая составляющая точности.
Случайная погрешность - составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается и какой-либо закономерности. Они неизбежны и неустранимы, всегда присутству<
Дата добавления: 2021-01-26; просмотров: 417;