Сжигание топлив в кипящем слое


 

Современное развитие энергетики и обострение экологической ситуации в мире потребовали поисков и разработки более прогрессивных и экологически чистых технологий сжигания твердых топлив.

Одним из перспективных направлений, обеспечивающих экологическую чистоту использования твердых низкосортных топлив в энергоустановках будущего, следует считать их сжигание в котлах с топками кипящего слоя различных модификаций: классической, циркулирующей, аэрофонтанирующей с применением аэрофонтанных аппаратов, поскольку при этом в значительной степени снижаются выбросы SO2 и NOx уже на стадии сжигания [1].

 

1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем

 

а) б) в)

Рис. 1.1. Схемы установок с кипящим слоем: а – классический кипящий слой: б – циркулирующий кипящий слой; в – кипящий слой под давлением; 1 – основной воздух; 2 – подача топлива; 3 – вторичный воздух; 4 – вывод золы; 5 – возврат уноса; 6 – продукты сгорания; 7 – циклон; 8 – поверхность нагрева; 9 – турбина и компрессор

 

На рис.1.1. приведена схема топки с классическим пузырьковым кипящим слоем. В пузырьковом кипящем слое при атмосферном давлении уголь (или другое твердое топливо) сжигается в слое твердых частиц (обычно известняк), который псевдоожижается воздухом, подающимся для горения под слой. Разогрев слоя осуществляется горячим воздухом или газами с помощью специальной газовой горелки. Котлы с кипящим слоем спроектированы так, чтобы температура слоя находилась в интервале 815–870 oС. Возможность работы при низких температурах приводит к нескольким преимуществам. Благодаря низкой температуре для связывания SO2 можно использовать в качестве сорбента недорогие материалы, такие как известняк и доломит. Когда в слой добавляется известняк или доломит, в результате реакции между CaO и SO2 образуется CaSO4. В зависимости от содержания серы в топливе и количества сорбента выбросы SO2 могут быть сокращены на 90 % и более. Термические оксиды азота образуются при температурах свыше 1300 oС. При снижении температуры скорость реакции образования NOx сильно уменьшается. При температурах 815–870 oС количество NOx, образовавшегося в кипящем слое, значительно меньше, чем в традиционных котельных установках, работающих при более высоких температурах.

Технология сжигания в кипящем слое (КС) имеет целый ряд преимуществ по сравнению с пылеугольным сжиганием твердых топлив.

К ним следует отнести:

– простота конструкции;

– возможность сжигания низкокачественных углей;

– безопасность в экспуатации;

– отсутствие мельниц тонкого помола;

– связывание SO2 и SO3;

– подавление NOx (до 200 мг/м3).

Вследствие интенсивного перемешивания происходит выравнивание температуры во всем кипящем слое, поэтому слой можно считать изотермическим. Поверхности нагрева, опущенные в кипящий слой, имеют очень высокий коэффициент теплоотдачи. Этому способствует разрушение граничного слоя на теплообменной поверхности, а также прямое соприкосновение частиц с теплоотводящей поверхностью.

К недостаткам этой технологии сжигания следует отнести абразивный износ поверхностей нагрева, расположенных в слое; высокие значения механического недожога, ограничение мощности котельных агрегатов, оборудованных топками с кипящим слоем до 250 т/ч. Для более мощных котлов требуются решетки больших габаритов, что создает трудности по обеспечению равномерной скорости дутья.

Идеальным топливом для котлов с кипящим слоем служат сланцы, имеющие высокую реакционную способность, высокую зольность, которая определяет большую массу материала, в связи с чем стабилизируется температура сжигания, происходит быстрая сушка топлива и хорошее выгорание.

При использовании низкозольных канско-ачинских углей требуется большая добавка инертного материала. Сжигание углей с высоким содержанием солей щелочных металлов очень выгодно использовать в топках с кипящим слоем, когда практически не происходит испарения солей. Отсюда появляется возможность вовлечения так называемых «соленых» углей в энергетику.

Примером тому служит промышленный опыт внедрения кипящего слоя для сжигания шлакующих «соленых» углей в США.

В 1986 г. фирма «Бабкок-Вилькокс» переоборудовала котел с механической топкой на ТЭС Монтана-Дакота в установку с пузырьковым кипящим слоем. Этот котел был первоначально спроектирован на производительность 81,9 кг/с (295 т/ч) пара при давлении 9 МПа и температуре 510 oС для сжигания бурого угля месторождения Белах.

Однако высокое содержание соединений натрия в летучей золе приводило к сильному шлакованию топки и загрязнению пароперегревателя. До реконструкции с устройством кипящего слоя мощность была ограничена 50 МВт при расчетной 72 МВт. Для того чтобы избежать шлакования и загрязнения и поверхностей нагрева и обеспечить работу на полную мощность, был использован кипящий слой. Новая установка с кипящим слоем сечением 12,2 х 7,9 м была вмонтирована в старый котел с минимальными изменениями работающих под давлением поверхностей экранов. Воздухораспределительная решетка и окружающие ее стенки охлаждались водой. Пароперегреватель и испаритель размещались в слое для обеспечения необходимой паропроизводительности и перегрева пара и ограничения температуры слоя на уровне 815 oС. Скорость газов в слое составляла 3,7 м/с, а глубина слоя в рабочем состоянии – 1,37 м. Для включения и запуска установки подвод воздуха осуществлялся через восемь секций. Поскольку бурый уголь месторождения Белах – высокореакционное топливо, возврат летучей золы не предусматривался. С учетом низкого содержания серы и высокого содержания щелочных компонентов в топливе в качестве материала слоя был использован песок. Котел был пущен в эксплуатацию в мае 1987 г. Сейчас этот блок несет нагрузку 80 МВт при отсутствии шлакования и загрязнения поверхностей. Измеренные концентрации NOx составляли 0,14 г/МДж.



Дата добавления: 2016-10-07; просмотров: 3832;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.