Маршрутизаторы. Автономные системы.
Маршрутизатор является достаточно сложным устройством, который определяется как устройство сетевого уровня, использующее одну или несколько метрик для определения оптимального пути передачи сетевого трафика на основании информации сетевого уровня.
При их создании используются 3 основные архитектуры.
1)Однопроцессорная. Здесь на процессор возлагается весь комплекс задач, включающий: фильтрацию и передачу пакетов; модификацию заголовков пакетов; обновление таблиц маршрутизации; выделение служебных пакетов; формирование управляющих пакетов; работа с протоколом управления сетью SNMP и т.д.
Однако даже мощные RISC-процессоры не справляются с обработкой при большой загрузке.
2)Расширенная однопроцессорная. В функциональной схеме маршрутизатора выделяют модули, ответственные за выполнение ряда задач (например, работа со, служебными пакетами). Каждый такой функциональный модуль снабжается собственным процессором (периферийным).
3)Симметричная многопроцессорная архитектура. Здесь происходит равномерное распределение нагрузки на все процессорные модули. Каждый из модулей выполняет все задачи маршрутизации и имеет свою собственную копию таблицы маршрутизации. Это наиболее прогрессивная для маршрутизаторов архитектура.
IP-маршрутизаторы
IP (Internet Protocol) является в настоящее время наиболее распространенным (в сети Интернет). Протокол работает на сетевом уровне и именно на этом уровне принимается решение о маршрутизации.
Существует 2 подхода к выбору маршрута:
• одношаговый подход;
• маршрутизация от источника.
Приодношаговой маршрутизации каждый маршрутизатор принимает участие в выборе только одного шага передачи дейтаграммы. Поэтому в строке таблицы маршрутизации указывается не весь маршрут (к получателю), а только один IP-адрес следующего маршрутизатора. Для тех адресов, которые отсутствуют в таблице, используется адрес маршрутизатора по умолчанию.
Алгоритмы построения таблиц при одношаговой маршрутизации могут быть следующими:
• фиксированная маршрутизация (таблица составляется «вручную» администратором);
• случайная маршрутизация (пакет передается в любом случайном !, направлении кроме исходного);
• лавинная маршрутизация (дейтаграмма передается во все направления, кроме исходного);
• адаптивная маршрутизация (таблица маршрутизации периодически корректируется на основании сведений о сетевой топологии от других маршрутизаторов).
Протоколы адаптивной маршрутизации получили наибольшее распространение в IP-сетях. Это протоколы: RIP, OSPF, IS-IS, EGP, BGP и т.д. Примаршрутизации от источника выбор маршрута производится конечным узлом или первым маршрутизатором на пути следования дейтаграммы. В IP-сетях этот метод не нашел распространения, зато широко применяется в АТМ-сетях (например, протокол PNNI).
Автономные системы
В связи с ростом сети Интернет производительность маршрутизаторов значительно снизилась. Неимоверно возрос объем трафика для поддержания маршрутизации и выросли в объеме маршрутные таблицы. В связи с этим Интернет была разделена на ряд Автономных систем (AC) (Autonomous System) (рис.7.1.). Каждая такая система представляет собой группу сетей и маршрутизаторов, управляемую уполномоченным. Это позволяет маршрутизатору внутри каждой АС использовать различные протоколы маршрутизации. Здесь используются динамические протоколы маршрутизации, определяемые как класс ЮР-протоколов (IGP – Interior Gateway Protocol – внутренний шлюзовой протокол). К этому классу относятся протоколы RIP, IS-IS и т.д.
Для взаимодействия маршрутизаторов, принадлежащих к разным АС, используется дополнительный протокол, называемый EGP–внешний шлюзовой протокол).
Протокол RIP
Протокол RIP относится к классу IGP. Появился протокол в 1982 году как часть стека протоколов TCP/IP. Стал стандартным протоколом маршрутизации внутри автономной системы. Ограничение – протокол не поддерживает длинные пути, содержащие более15 переходов.
В качестве метрики используется количество переходов (т.е. число маршрутизаторов, которые должна пройти дейтаграмма, прежде чем достигнет получателя). Всегда выбирается путь с наименьшим числом переходов.
Периодически каждый маршрутизатор посылает сообщения об обновлении маршрутов своим соседям. Такое сообщение содержит всю его таблицу маршрутизации. Предварительно эта таблица заполняется адресами тех сетей, к которым маршрутизатор имеет непосредственный доступ (см. рис.7.2.).
Перед передачей информации соседнему маршрутизатору таблица корректируется – количество переходов до получателя увеличивается на единицу. Получив такое служебное сообщение от соседнего маршрутизатора, маршрутизатор обновляет свою таблицу маршрутизации в соответствии со следующими правилами:
a) Если новое количество переходов меньше старого (для адреса конкретной сети) – эта запись вносится в таблицу маршрутизации.
b) Если запись поступила от того маршрутизатора, который являлся источником уже хранящейся записи, то новое значение количества переходов вносится даже в том случае, если оно больше старого.
По умолчанию интервал между рассылками сообщений – 30 с. При длительном молчании соседнего маршрутизатора (свыше 180 с) записи, относящиеся к нему удаляются из таблицы маршрутизации (предполагается отказ линии или самого маршрутизатора).
Протокол OSPF
Протокол OSPF (Open Shortest Path First) принят в 1991 году. Он ориентирован на применение в больших распределенных сетях. Основан на алгоритме состояния канала. Суть этог1 алгоритма состоит в том, что он должен вычислить кратчайший путь. Под «кратчайшим» имеется в виду не физическая длина, а время передачи информации. Маршрутизатор отправляет запросы своим соседям, находящимся в одном мене маршрутизации, для выявления состояния каналов до них и далее от них. Состояние канала при этом характеризуется несколькими параметрами, называемыми «метрикой». Это может быть:
• пропускная способность канала;
• загрузка канала на текущий момент;
• задержка информации при прохождении по этому каналу и т.д. Обобщив полученные сведения, маршрутизатор сообщает их всем соседям. после этого им строится ориентированный граф топологии домена маршрутизации. Каждому ребру графа назначается оценочный параметр (метрика)(рис.7.3.).
Затем используется алгоритм Дейкстры, который по двум заданным узлам ходит набор ребер с наименьшей суммарной стоимостью, т.е. выбирается оптимальный маршрут. В соответствии с этим строится таблица маршрутизации.
Протокол OSPF относится к классу ЮР-протоколов и заменяет протокол RIР в больших и сложных сетях. Рассылка информации о состоянии каналов производится каждые 30 минут. На основе этих сообщений на каждом из маршрутизаторов создается база данных состояния каналов (Link-State 1 Datadase). Эта база одинакова на всех маршрутизаторах домена.
На основе этой базы данных маршрутизатор формирует карту сетевой топологии и дерево кратчайших путей ко всем возможным получателям (см. рис.). Затем формируется таблица маршрутизации (табл.7.1.). Для сетей, подключенных к маршрутизатору напрямую указывается метрика, равная нулю.
Сеть | Следующий маршрутизатор сети | Метрика маршрута |
Сеть1 | Маршрутизатор 5 | |
Сеть2 | Подключена на прямую | |
Сеть3 | Подключена на прямую | |
Сеть4 | Маршрутизатор 2 | |
Сеть5 | Маршрутизатор 2 | |
Сеть6 | Маршрутизатор 4 |
При изменении состояния хотя бы одного подключенного канала маршрутизатор рассылает сообщения своим соседям. Производится корректировка базы данных каналов, вычисляются кратчайшие пути, формируется заново таблица маршрутизации.
В больших сетях (с сотнями маршрутизаторов) протокол порождает счет много маршрутной информации, а база данных состояния каналов может достигать нескольких Мбайт.
37. функции, состав и назначение маршрутизатора
Основная функция маршрутизатора – чтение заголовка пакетов сетевых протоколов, принимаемых и буферизуемых по каждому порту (н. IP,IPX), и принятие решения о дальнейшем маршруте следования пакета по его сетевому адресу, включающему, как правило, номер сети и номер узла. Функции маршрутизатора могут быть разбиты на 3 группы в соответствии с уровнями модели OSI.
1. Уровень интерфейсов
На этом уровне маршрутизатор обеспечивает физический интерфейс со средой передачи. В разных моделях маршрутизаторов часто предусматриваются различные наборы физических интерфейсов, представляющих собой комбинацию портов для подсоединения локальных и глобальных сетей. С каждым интерфейсом для подключения локальной сети связан определенный протокол канального уровня – н. Ethernet, Token Ring. Интерфейсы для присоединения к глобальным сетям определяют только некоторый стандарт физического уровня, над которым в маршрутизаторе могут работать различные протоколы канального уровня. Интерфейсы маршрутизатора выполняют полный набор функций физического и канального уровней по передаче кадра, включая получение доступа к сети, формирование битовых сигналов, прием кадра, подсчет его контрольной суммы и передачу поля данных кадра верхнему уровню. Перечень физических интерфейсов, которые поддерживает та или иная модель маршрутизатора, является его важнейшей потребительской характеристикой. Маршрутизатор должен поддерживать все протоколы канального и физического уровней, используемые в каждой из сетей, к которым он будет непосредственно присоединен. Кадры, которые поступают на порты маршрутизатора, после обработки соответствующими протоколами физического и канального уровней, освобождаются от заголовков канального уровня. Извлеченные из поля данных кадра пакеты передаются модулю сетевого протокола. При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Маршрутизаторы объединяют отдельные сети в общую составную сеть (рис. 1). К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две). В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.
Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения. Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. В качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации.
1. Маршрутизаторы позволяют объединять сети с различными принципами организации в единую сеть, которая в этом случае часто называется интерсеть (internet). В каждой из сетей, образующих интерсеть, сохраняются присущие им принципы адресации узлов и протоколы обмена информацией. Поэтому маршрутизаторы могут объединять не только локальные сети с различной технологией, но и локальные сети с глобальными.
2. Маршрутизаторы надежно защищают сети друг от друга. При поступлении кадра с неправильным адресом маршрутизатор отказывается передавать "неправильный" пакет дальше, изолируя дефектный узел от остальной сети.
3. Маршрутизатор предоставляет администратору средства фильтрации потока сообщений за счет того, что сам распознает многие поля служебной информации в пакете и позволяет их именовать понятным администратору образом.
Дата добавления: 2016-10-07; просмотров: 2103;