Направления развития искусственного интеллекта
Искусственный интеллект – это одно из направлений информатики, цель которого разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка, развивается по следующим направлениям:
1. Представление знаний и разработка систем, основанных на знаниях. Это основное направление искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем (ЭС). В последнее время включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний.
2. Игры и творчество. Традиционно искусственный интеллект включает в себя игровые интеллектуальные задачи – шахматы, шашки и т.д. В основе лежит один из ранних подходов – лабиринтная модель плюс эвристики. Сейчас это скорее коммерческое направление, так как в научном плане эти идеи считаются тупиковыми.
3. Разработка естественноязыковых интерфейсов и машинный перевод. В 1950-х гг. одной из популярных тем исследований искусственного интеллекта являлась область машинного перевода. Первая программа в этой области – переводчик с английского языка на русский.
4. Распознавание образов. Традиционное направление искусственного интеллекта, берущее начало у самых его истоков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Это направление близко к машинному обучению, тесно связано с нейрокибернетикой.
5. Новые архитектуры компьютеров. Это направление занимается разработкой новых аппаратных решений и архитектур, направленных на обработку символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных и параллельным компьютерам.
6. Интеллектуальные роботы.
7. Специальное программное обеспечение. В рамках этого направления разрабатываются специальные языки для решения задач невычислительного плана. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта.
8. Обучение и самообучение. Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных.
Данные и знания
При изучении интеллектуальных систем традиционно возникает вопрос – что же такое знания и чем они отличаются от обычных данных, обрабатываемых ЭВМ.
Данные – это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.
Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека, обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путём. Таким образом, знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.
Часто используются такие определения знаний: знания – это хорошо структурированные данные, или данные о данных, или метаданные.
Для хранения знаний используются базы знаний (небольшого объёма, но исключительно дорогие информационные массивы). База знаний – основа любой интеллектуальной системы.
Знания могут быть классифицированы по следующим категориям:
· поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;
· глубинные – абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области.
Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет адекватных моделей, позволяющих работать с глубинными знаниями.
Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, «растворённые» в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и всё большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний.
Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.
Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:
· продукционные;
· семантические сети;
· фреймы;
· формальные логические модели.
Дата добавления: 2021-01-11; просмотров: 453;