Первые минуты существования Вселенной. Происхождение химических элементов.
Сверхплотное состояние Вселенной длилось недолго, но оно сыграло решающую роль в последующем развитии. При огромных значениях температуры и плотности вещества начались интенсивные процессы взаимопревращения частиц и квантов излучения. На первых порах в одинаковых количествах рождались частицы и соответствующие им античастицы из фотонов высокой энергии. В условиях сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были бы тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.
На ранних этапах развития Вселенной могли возникать чрезвычайно короткоживущие и очень массивные гипотетические частицы. С падением температуры и плотности (возраст достиг 0,01 сек, температура 1011К) стали возникать менее массивные частицы, в то время как более массивные “вымирали” за счёт аннигиляции или распада.
Вымирание частиц происходило не совсем одинаково, так что античастицы практически все исчезли, а ничтожная избыточная доля протонов и нейтронов осталась. В результате этого наблюдаемый мир оказался устроенным из вещества, а не из антивещества, хотя где-то во Вселенной могут быть и области из антивещества.
Без едва заметной ассиметрии свойств частиц и античастиц мир вообще оказался бы лишённым вещества.
Образованием нуклонов (протонов и нейтронов) завершается эра адронов эволюции Вселенной (адроны - частицы, подверженные сильным взаимодействиям: протоны, нейтроны, мезоны и т.д.). После адронной эры наступает эра лептонов, когда среда состоит преимущественно из положительных и отрицательных мюонов, нейтрино и антинейтрино, позитронов и электронов. Нуклоны встречаются редко. По мере дальнейшего расширения Вселенной происходит аннигиляция мюонов, электронов и позитронов. Затем прекращается взаимодействие нейтрино с веществом и к моменту 0,2 секунды после сингулярности, происходит отрыв нейтрино.
Примерно через 10 секунд после сингулярности температура достигает значения около 1010К и начинается эра излучения. На этом этапе по численности преобладают фотоны, всё ещё сильно взаимодействующие с веществом, а также нейтрино.
Огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя незначительное количество электронов, достаточное, однако, чтобы объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.
Через 3 минуты после Большого Взрыва начинаются первые процессы нуклеосинтеза. Некоторая часть протонов успевает соединиться с нейтронами и образовать ядра гелия. В них перешло около 10% общего числа протонов. Эра излучения заканчивается переходом плазмы из ионизованного состояния в нейтральное, уменьшением непрозрачности вещества и “отрывом” излучения. Через минуту почти всё вещество Вселенной состояло из ядер водорода и гелия, находившихся в такой же пропорции, которую мы наблюдаем сегодня. Начиная с этого момента расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700 000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло реликтовое фоновое излучение.
Через миллион лет после начала расширения начинается эра вещества, когда из горячей водородно-гелиевой плазмы с малой примесью других ядер стало развиваться многообразие нынешнего мира.
После того, как вещество стало прозрачно для электро-магнитного излучения, в действие вступило тяготение, оно стало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звёзды и планеты.
В этой картине остаётся много нерешённых вопросов. Образовались ли галактики раньше первого поколения звёзд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звёздах, галактиках, скоплениях, тогда как Вселенная как целое разлеталась в разные стороны?
Неоднородности во Вселенной, из которых впоследствии образовались все структурные образования Вселенной зародились в виде ничтожных флуктуаций, а затем усилились в эпоху, когда ионизованный газ во Вселенной стал превращаться в нейтральный, т.е. когда излучение оторвалось от вещества и стало реликтовым. Такое усиление может привести к возникновению заметных флуктуаций, из которых впоследствии стали образовываться галактики.
При образовании крупных структур Вселенной существенную роль могли играть нейтрино, если их масса покоя отлична от нуля. Через несколько сотен лет после начала расширения скорость нейтрино, обладающих массой, должна стать заметно меньше световой. Начиная с некоторого момента, крупные сгущения нейтрино уже не рассасываются и дают начало крупным структурным образованиям Вселенной - скоплениям и сверхскоплениям галактик. Сами галактики образуются из обычного вещества, а нейтрино, если они обладают заметной массой, выступают в роли центров притяжения для гигантских сгущений масс, являясь источником скрытой массы скоплений галактик.
В 1978 году М. Рис высказал предположение, что фоновое излучение может быть результатом “эпидемии” образования массивных звёзд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд лет. Продолжительность жизни таких звёзд не могла превышать 1 млрд лет. Многие из них взорвались как сверхновые и выбросили в пространство тяжёлые химические элементы, которые частично собрались в крупицы твёрдого вещества, образовав облака межзвёздной пыли. Эта пыль, нагретая излучением догалактических звёзд, могла испускать инфракрасное излучение, которое наблюдается сейчас как микроволновое фоновое излучение. Если эта гипотеза верна, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звёзд первого, догалактического, поколения и в настоящее время может находиться в массивных тёмных гало, окружающих яркие галактики.
Дата добавления: 2021-01-11; просмотров: 366;