Устройство современной стационарной высокотемпературной ГТУ


Традиционная современная газотурбинная установка (ГТУ) — это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Необходимо подчеркнуть одно важное отличие ГТУ от ПТУ. В состав ПТУ не входит котел, точнее котел рассматривается как отдельный ис­точник тепла; при таком рассмотрении котел — это «черный ящик»: в него входит питательная вода с температурой tп.в, а выходит пар с параметрами р0, t0. Паротурбинная установка без котла как физического объекта работать не может. В ГТУ камера сгорания — это ее неотъемлемый элемент. В этом смысле ГТУ — самодостаточна.

Газотурбинные установки отличаются чрезвычайно большим разнообразием, пожалуй, даже большим, чем паротурбинные. Ниже рассмотрим наиболее перспективные и наиболее используемые в энергетике ГТУ простого цикла.

 

Рис.1–принципиальная схема ГТУ

(Рисунок из проспекта фирмы Siemens)

Принципиальная схема такой ГТУ показана на рис. 1 Воздух из атмосферы поступает на вход воздушного компрессора, который представляет собой роторную турбомашину с проточной частью, состоящей из вращающихся и неподвижных решеток. Отношение давления за компрессором рb к давлению перед ним рa называется степенью сжатия воздушного компрессора и обычно обозначается как pк (pк = pb/pa). Ротор компрессора приводится газовой турбиной. Поток сжатого воздуха подается в одну, две (как на рис. 1 )или более камер сгорания. При этом в большинстве случаев поток воздуха, идущий из компрессора, разделяется на два потока. Первый поток направляется к горелочным устройствам, куда также подается топливо (газ или жидкое топливо). При сжигании топлива образуются продукты сгорания топлива высокой температуры. К ним подмешивается относительно холодный воздух второго потока с тем, чтобы получить газы (их обычно называют рабочими газами) с допустимой для деталей газовой турбины температурой.

Рабочие газы с давлением рс (рс < рb из-за гидравлического сопротивления камеры сгорания) подаются в проточную часть газовой турбины, принцип действия которой ничем не отличается от принципа действия паровой турбины (отличие состоит только в том, что газовая турбина работает на продуктах сгорания топлива, а не на паре). В газовой турбине рабочие газы расширяются практически до атмосферного давления pd, поступают в выходной диффузор 14, и из него — либо сразу в дымовую трубу, либо предварительно в какой-либо теплообменник, использующий теплоту уходящих газов ГТУ.

Вследствие расширения газов в газовой турбине, последняя вырабатывает мощность. Весьма значительная ее часть (примерно половина) тратится на привод компрессора, а оставшаяся часть — на привод электрогенератора. Это и есть полезная мощность ГТУ, которая указывается при ее маркировке.

Для изображения схем ГТУ применяют условные обозначения, подоб­ные тем, которые используют для ПТУ (рис. 2).

 

Рис.2 Схема ГТУ простой схемы в условных обозначениях

 

 

Из рассмотрения рис. 1 и 2 становится ясным, почему описанная ГТУ называется ГТУ простого термодинамического цикла. Более простой ГТУ быть не может, так как она содержит минимум необходимых компонентов, обеспечивающих последовательные процессы сжатия, нагрева и расширения рабочего тела: один компрессор, одну или несколько камер сгорания, работающих в одинаковых условиях, и одну газовую турбину. Наряду с ГТУ простого цикла, существуют ГТУ сложного цикла, которые могут содержать несколько компрессоров, турбин и камер сгорания. Отработавшие газы с температурой 390 °С выходят либо в дымовую трубу, либо в теплообменник для использования теплоты уходящих газов.

Как увидим ниже, ГТУ не отличается высокой экономичностью из-за высокой температуры уходящих газов. Усложнение схемы позволяет повысить ее экономичность, но одновременно требует увеличения капиталовложений и усложняет эксплуатацию.

Рис.3 Устройство ГТУ V94.3 (рисунок из проспекта фирмыSiemens)

 

На рис. 3 показано устройство ГТУ V94.3 фирмы Siemens. Атмосферный воздух от комплексного воздухоочистительного устройства (КВОУ) поступает в шахту 4, а из нее — к проточной части 16 воздушного компрессора. В компрессоре происходит сжатие воздуха. Степень сжатия в типичных компрессорах составляет pк = 13—17, и таким об­разом давление в тракте ГТУ не превышает 1,3—1,7 МПа (13—17 ат). Это еще одно серьезное отличие ГТУ от паровой турбины, в которой давление пара больше, чем давление газов в ГТУ в 10—15 раз. Малое давление рабочей среды обусловливает малую толщину стенок корпусов и легкость их прогрева. Именно это делает ГТУ очень маневренной, т.е. способной к быстрым пускам и остановкам. Если для пуска паровой турбины в зависимости от ее начального температурного состояния требуется от 1 ч до нескольких часов, то ГТУ может быть введена в работу за 10—15 мин.

При сжатии в компрессоре воздух нагревается. Оценить этот нагрев можно по простому приближенному соотношению:

 

(7.1)

в котором Тb и Та — абсолютные температуры воздуха за и перед компрессором. Если, например, Та = 300 К, т.е. температура окружающего воздуха 27 °С, а pк = 16, то Тb = 600 К и, следовательно, воздух нагревается на

 

 

 

Таким образом, за компрессором температура воздуха составляет 300—350 °С. Воздух между стенками пламенной трубы (см. рис.3) и корпуса камеры сгорания движется к горелочному устройству, к которому подается и топливный газ. Поскольку топливо должно поступать в камеру сгорания, где давление 1,3—1,7 МПа, то давление газа должно быть большим. Для возможности регулирования его расхода в камеру сгорания требуется давление газа примерно вдвое больше, чем давление в камере. Если в подводящем газопроводе имеется такое давление, то газ подается в камеру сгорания прямо с газораспределительного пункта (ГРП). Если давление газа недостаточное, то между ГРП и камерой устанавливают дожимной газовый компрессор.

Расход топливного газа составляет всего примерно 1—1,5 % от расхода воздуха, поступающего от компрессора, поэтому создание высокоэкономичного дожимного газового компрессора представляет определенные технические трудности.

Внутри пламенной трубы 10 образуются продукты сгорания высокой температуры. После подмешивания вторичного воздуха на выходе из камеры сгорания она несколько снижается, но достигает тем не менее, в типичных современных ГТУ 1350—1400 °С.

Из камеры сгорания горячие газы поступают в проточную часть 7 газовой турбины. В ней газы расширяются до практически атмосферного давления, так как пространство за газовой турбиной сообщается либо с дымовой трубой, либо с теплообменником, гидравлическое сопротивление которого невелико.

При расширении газов в газовой турбине на ее валу создается мощность. Эта мощность частично расходуется на привод воздушного компрессора, а ее избыток — на привод ротора 1 электрогенератора. Одна из характерных особенностей ГТУ состоит в том, что компрессор требует примерно половины мощности, развиваемой газовой турбиной. Например, в создаваемой в России ГТУ мощностью 180 МВт (это и есть полезная мощность) мощность компрессора составляет 196 МВт. Это одно из принципиальных отличий ГТУ от ПТУ: в последней мощность, идущая на сжатие питательной воды даже до давления в 23,5 МПа (240 ат) составляет всего несколько процентов от мощности паровой турбины. Связано это с тем, что вода — малосжимаемая жидкость, а воздух для сжатия требует много энергии.

В первом, достаточно грубом приближении, температуру газов за турбиной можно оценить по простому соотношению, аналогичному (7.1):

 

(7.2)

 

Поэтому, если pк = 16, а температура перед турбиной Тс = 1400 °С = 1673 К, то температура за ней составляет примерно

 

 

 

Таким образом, температура газов за ГТУ достаточно высока, и значительное количество теплоты, полученной при сжигании топлива, в буквальном смысле уходит в дымовую трубу. Поэтому при автономной работе ГТУ ее КПД невелик:для типичных ГТУ он составляет 35—36 %, т.е. существенно меньше, чем КПД ПТУ. Дело, однако, кардинальным образом изменяется при установке на «хвосте» ГТУ теплообменника (сетевого подогревателя или котла-утилизатора для комбинированного цикла), .

За газовой турбиной устанавливают диффузор — плавно расширяющийся канал, при течении в котором скоростной напор газов частично преобразуется в давление. Это позволяет иметь за газовой турбиной давление меньшее, чем атмосферное, что увеличивает работоспособность 1 кг газов в турбине и, следовательно, повышает ее мощность.

Устройство воздушного компрессора. Как уже указывалось, воздушный компрессор — это турбомашина, к валу которой подводится мощность от газовой турбины; эта мощность передается воздуху, протекающему через проточную часть компрессора, вследствие чего давление воздуха повышается вплоть до давления в камере сгорания.

Рис.4 Ротор воздушного компрессора, уложенный в опорные подшипники

 

На рис. 4 показан ротор ГТУ, уложенный в опорные подшипники; на переднем плане хорошо виден ротор компрессора и статорные элементы.

Из шахты 4 (см. рис. 3) воздух поступает в каналы, образованные поворотными лопатками 2 (рис. 4) невращающегося входного направляющего аппарата (ВНА). Главная задача ВНА — сообщить потоку, движущемуся в осевом (или радиально-осевом) направлении вращательное движение. Каналы ВНА принципиально не отличаются от сопловых каналов паровой турбины они являются конфузорными (суживающимися), и поток в них ускоряется, одновременно приобретая окружную составляющую скорости.

Создание высокоэкономичных воздушных компрессоров представляет собой чрезвычайно сложную задачу, которую, в отличие от турбин, невозможно решить только расчетом и проектированием. Поскольку мощность компрессора равна примерно мощности ГТУ, то ухудшение экономичности компрессора на 1 % приводит к снижению экономичности всей ГТУ на 2—2,5 %. Поэтому создание хорошего компрессора является одной из ключевых проблем создания ГТУ. Обычно компрессоры создаются путем моделирования (масштабирования), используя модельный компрессор, созданный путем длительной экспериментальной доводки.

Камеры сгорания ГТУ отличаются большим разнообразием. Выше (на рис. 3) показана ГТУ с двумя выносными камерами.

Рис.5 Внешний вид ГТУ 13Е на сборочном стенде завода

 

Главный недостаток выносных камер сгорания — большие габариты, которые хорошо видны из рис.5. Справа от камеры размещается газовая турбина, слева — компрессор. Сверху в корпусе видны три отверстия для размещения антипомпажных клапанов и далее — привод ВНА. В современных ГТУ используют в основном встроенные камеры сгорания: кольцевые и трубчато-кольцевые.

Рис.6.Горелка кольцевой камеры сгорания

 

 

Устройство горелки показано на рис. 6. Из коллектора газ поступает по сверлению в штоке 3 к внутренней полости лопаток 6 завихрителя. Последний представляет собой полые радиальные прямые лопатки, заставляющие воздух, поступающий из камеры сгорания, закручиваться и вращаться вокруг оси штока. В этот вращающийся воздушный вихрь поступает природный газ из внутренней полости лопаток завихрителя 6 через мелкие отверстия 7. При этом образуется однородная топливно-воздушная смесь, выходящая в виде закрученной струи из зоны 5. Кольцевой вращающийся вихрь обеспечивает устойчивое горение газа.

 

Газовая турбина является наиболее сложным элементом ГТУ, что обусловлено в первую очередь очень высокой температурой рабочих газов, протекающих через ее проточную часть: температура газов перед турбиной 1350 °С в настоящее время считается «стандартной», и ведущие фирмы, в первую очередь General Electric, работают над освоением начальной температуры 1500 °С. Напомним, что «стандартная» начальная температура для паровых турбин составляет 540 °С, а в перспективе — температура 600—620 °С.

 

Рис.7Повышение КПД реальных ГТУ в связи с ростом температуры перед газовой турбиной

 

Стремление повысить начальную температуру связано, прежде всего, с выигрышем в экономичности, который она дает. Это хорошо видно из рис. 7., обобщающего достигнутый уровень газотурбостроения: повышение начальной температуры с 1100 до 1450 °С дает увеличение абсолютного КПД с 32 до 40 %, т.е. приводит к экономии топлива в 25 %. Конечно, часть этой экономии связана не только с повышением температуры, но и с совершенствованием других элементов ГТУ, а определяющим фактором все-таки является начальная температура.

Для обеспечения длительной работы газовой турбины используют сочетание двух средств. Первое средство — применение для наиболее нагруженных деталей жаропрочных материалов, способных сопротивляться действию высоких механических нагрузок и температур (в первую очередь для сопловых и рабочих лопаток). Если для лопаток паровых турбин и некоторых других элементов применяются стали (т.е. сплавы на основе железа) с содержанием хрома 12—13 %, то для лопаток газовых турбин используют сплавы на никелевой основе (нимоники), которые способны при реально действующих механических нагрузках и необходимом сроке службы выдержать температуру 800—850 °С. Поэтому вместе с первым используют второе средство — охлаждение наиболее горячих деталей.

Для охлаждения большинства современных ГТУ используется воздух, отбираемый из различных ступеней воздушного компрессора. Уже работают ГТУ, в которых для охлаждения используется водяной пар, который является лучшим охлаждающим агентом, чем воздух. Охлаждающий воздух после нагрева в охлаждаемой детали сбрасывается в проточную часть газовой турбины. Такая система охлаждения называется открытой. Существуют замкнутые системы охлаждения, в которых нагретый в детали охлаждающий агент направляется в холодильник и затем снова возвращается для охлаждения детали. Такая система не только весьма сложна, но и требует утилизации тепла, отбираемого в холодильнике.

Система охлаждения газовой турбины — самая сложная система в ГТУ, определяющая ее срок службы. Она обеспечивает не только поддержание допустимого уровня рабочих и сопловых лопаток, но и корпусных элементов, дисков, несущих рабочие лопатки, запирание уплотнений подшипников, где циркулирует масло и т.д. Эта система чрезвычайно сильно разветвлена и организуется так, чтобы каждый охлаждаемый элемент получал охлаждающий воздух тех параметров и в том количестве, который необходим для поддержания его оптимальной температуры. Излишнее охлаждение деталей так же вредно, как и недостаточное, так как оно приводит к повышенным затратам охлаждающего воздуха, на сжатие которого в компрессоре затрачивается мощность турбины. Кроме того, повышенные расходы воздуха на охлаждение приводят к снижению температуры газов за турбиной, что очень существенно влияет на работу оборудования, установленного за ГТУ (например, паротурбинной установки, работающей в составе ПТУ). Наконец, система охлаждения должна обеспечивать не только необходимый уровень температур деталей, но и равномерность их прогрева, исключающую появление опасных температурных напряжений, циклическое действие которых приводит к появлению трещин.

Рис.8 Литейный стержень для отливки сопловой лопатки

Рис. 9 Литейный стержень для отливки рабочей лопатки

Для того чтобы понять, как устроены охлаждаемые лопатки, необходимо хотя бы в общих чертах рассмотреть технологию их изготовления. Ввиду исключительной трудности механической обработки никелевых сплавов для получения лопаток в основном используется точное литье по выплавляемым моделям. Для его реализации сначала по специальной технологии формовки и термообработки из материалов на основе керамики изготавливают литейные стержни (рис. 8 и 9). Литейный стержень — это точная копия полости внутри будущей лопатки, в которую будет поступать и протекать в необходимом направлении охлаждающий воздух. Литейный стержень помещают в пресс-форму, внутренняя полость в которой полностью соответствует лопатке , которую необходимо получить. Получающееся свободное пространство между стержнем и стенкой пресс-формы запол­няют нагретой легкоплавкой массой (например, пластмассой), которая застывает. Стержень вместе с обволакивающей ее застывающей массой, повторяющей внешнюю форму лопатки, представляет собой выплавляемую модель. Ее помещают в литейную форму, к которой подают расплав нимоника. Последний выплавляет пластмассу, занимает ее место и в результате появляется литая лопатка с внутренней полостью, заполненной стержнем. Стрежень удаляют вытравливанием специальными химическими растворами. Полученные сопловые лопатки практически не требуют дополнительной механической обработки (кроме изготовления многочисленных отверстий для выхода охлаждающего воздуха). Рабочие литые лопатки требуют обработки хвостовика с помощью специального абразивного инструмента.

Описанная вкратце технология заимствована из авиационной техники, где достигнутые температуры гораздо выше, чем в стационарных паровых турбинах. Трудность освоения этих технологий связана с гораздо большими размерами лопаток для стационарных ГТУ, которые растут пропорционально расходу газов, т.е. мощности ГТУ.

Весьма перспективным представляется использование так называемых монокристаллических лопаток, которые изготавливаются из одного кристалла. Связано это с тем, что наличие границ зерен при длительном пребывании при высокой температуре приводит к ухудшению свойств металла.

Рис10.Ротор ГТУ фирмы Siemens

Ротор газовой турбины представляет собой уникальную сборную конструкцию (рис.10 , а). Перед сборкой отдельные диски 5 компрессора и диска 7 газовой турбины облопачиваются и балансируются, изготавливаются концевые части 1 и 8, проставочная часть 11 и центральный стяжной болт 6. Каждый из дисков имеет два кольцевых воротника, на котором выполнены хирты (по имени изобретателя — Hirth), — строго радиальные зубья треугольного профиля. Смежные детали имеют точно такие же воротники с точно такими же хиртами. При хорошем качестве изготовления хиртового соединения обеспечивается абсолютная центровка смежных дисков (это обеспечивает радиальность хиртов) и повторяемость сборки после разборки ротора.

Ротор собирается на специальном стенде, представляющем собой лифт с кольцевой площадкой для монтажного персонала, внутри которой осуществляется сборка. Сначала собирается на резьбе концевая часть ротора 1 и стяжной стержень 6. Стержень ставится вертикально внутри кольцевой площадки и сверху на него с помощью крана опускается диск 1-й ступени компрессора. Центровка диска и концевой части осуществляется хиртами. Перемещаясь на специальном лифте вверх, монтажный персонал диск за диском [сначала компрессора, затем проставочная часть, а затем турбины и правой концевой части 8 (см. рис. 10, а)] собирает весь ротор. На правый конец навинчивается гайка 9, а на оставшуюся часть резьбовой части стяжного стержня устанавливается гидравлическое устройство, сдавливающее диски и вытягивающее стяжной стержень. После вытяжки стержня гайка 9 навинчивается до упора, и гидравлическое устройство снимается. Растянутый стержень надежно стягивает диски между собой и превращает ротор в единую жесткую конструкцию. Собранный ротор извлекают из сборочного стенда, и он готов к установке в ГТУ.

 

Рис.11. Конструкция и сборка ротора ГТУ фирмы Siemens

 

Преимущества, недостатки и области применения ГТУ

Главным преимуществом ГТУ является ее компактность. Действительно, прежде всего, в ГТУ отсутствует паровой котел, — сооружение, достигающее большой высоты и требующее для установки отдельного помещения . Связано это обстоятельство, прежде всего с высоким давлением в камере сгорания (1,2—2 МПа); в котле горение происходит при атмосферном давлении и соответственно объем образующихся горячих газов оказывается в 12—20 раз больше. Далее, в ГТУ процесс расширения газов происходит в газовой турбине, состоящей всего из 3—5 ступеней, в то время как паровая турбина, имеющая такую же мощность, состоит из 3—4 цилиндров, заключающих 25—30 ступеней. Даже с учетом и камеры сгорания, и воздушного компрессора ГТУ мощностью 150 МВт имеет длину 8—12 м, а длина паровой турбины такой же мощности при трехцилиндровом исполнении в 1,5 раза больше. При этом для паровой турбины кроме котла необходимо предусмотреть установку конденсатора с циркуляционными и конденсатными насосами, систему регенерации из 7—9 подогревателей, питательные турбонасосы (от одного до трех), деаэратор. Как следствие, ГТУ может быть установлена на бетонное основание на нулевой отметке машинного зала, а ПТУ требует рамного фундамента высотой 9—16 м с размещением паровой турбины на верхней фундаментной плите и вспомогательного оборудования — в конденсационном помещении.

Компактность ГТУ позволяет осуществить ее сборку на турбинном заводе, доставить в машинный зал железнодорожным или автодорожным транспортом для установки на простом фундаменте. Так, в частности, транспортируется ГТУ с встроенными камерами сгорания. При транспортировке ГТУ с выносными камерами последние транспортируются отдельно, но легко и быстро присоединяются с помощью фланцев к модулю компрессор — газовая турбина. Паровая турбина поставляется многочисленными узлами и деталями, монтаж как ее самой, так и многочисленного вспомогательного оборудования и связей между ними занимает в несколько раз больше времени, чем ГТУ.

ГТУ не требует охлаждающей воды. Как следствие, в ГТУ отсутствует конденсатор и система технического водоснабжения с насосной установкой и градирней (при оборотном водоснабжении). В результате все это приводит к тому, что стоимость 1 кВт установленной мощности газотурбинной электростанции значительно меньше. При этом стоимость собственно ГТУ (компрессор + камера сгорания + газовая турбина) из-за ее сложности оказывается в 3—4 раза больше, чем стоимость паровой турбины такой же мощности.

Важным преимуществом ГТУ является ее высокая маневренность, определяемая малым уровнем давления (по сравнению с давлением в паровой турбине) и, следовательно, легким прогревом и охлаждением без возникновения опасных температурных напряжений и деформаций.

Однако ГТУ имеют и существенные недостатки, из которых, прежде всего, необходимо отметить меньшую экономичность, чем у паросиловой установки. Средний КПД достаточно хороших ГТУ составляет 37—38 %, а паротурбинных энергоблоков — 42—43 %. Потолком для мощных энергетических ГТУ, как он видится в настоящее время, является КПД на уровне 41—42 %, (а может быть и выше с учетом больших резервов повышения начальной температуры). Меньшая экономичность ГТУ связана с высокой температурой уходящих газов.

Другим недостатком ГТУ является невозможность использования в них низкосортных топлив, по крайней мере, в настоящее время. Она может хорошо работать только на газе или на хорошем жидком топливе, например дизельном. Паросиловые энергоблоки могут работать на любом топливе, включая самое некачественное.

Низкая начальная стоимость ТЭС с ГТУ и одновременно сравнитель­но низкая экономичность и высокие стоимость используемого топлива и маневренность определяют основную область индивидуального использования ГТУ: в энергосистемах их следует применять как пиковые или резервные источники мощности, работающие несколько часов в сутки.

Вместе с тем ситуация кардинально изменяется при использовании теплоты уходящих газов ГТУ в теплофикационных установках или в комбинированном (парогазовом) цикле. Речь об этом будет в следующей лекции.

 

Сравнительные характеристики отечественных и зарубежных ГТУ

 

Показатели мощных энергетических ГТУ зарубежных фирм-изготовителей  
Таблица 7.2 Показатель Фирма-изготовитель (разработчик), тип ГТУ и год выпуска  
ABB General Electric Mitsubishi Siemens Wes­ting-house  
GT13E2 GT26 PG6101FA PG9171E PG923EC PG351FA MW701DA MW701F MW701G V64.3A V94.2 V94.2A V94.3A W401  
1993 г. 1994г. 1993 г. 1987 г. 1994г. 1996 г. 1992 г. 1997г. 1998 г. 1996 г. 1987г. 1997 г. 1995 г. 1997г.  
Мощность, МВт 165,1 70,1 123,4 169,2 255,6 144,1 270,3 334,0 70,0 159,0 190,0 255,0 85,9  
КПД, % 35,7 38,5 34,2 33,8 34,9 36,9 34,8 38,2 39,5 36,5 34,5 36,4 38,5 36,6  
Мощность пиковая, МВт 176,9 73, 133,0 184,7 167,0  
Степень сжатия 14,6 30,0 15,0 12,3 14,2 15,4 14,0 17,0 21,0 16,2 11,1 14,0 17,0 19,0  
Расход воздуха, кг/с 532,5 562,0 205,2 404,1 499,0 645,6 445,4 652,4 737,8 190,2 513,9 527,0 641,0 228,9  
Частота вра- щения, об/мин  
Температура газов в турбине, °С:    
на входе  
на выходе  
Возможная выработка тепла, МВт 113,5  
Масса ГТУ, т 11О  
Габариты, м:    
длина 10,8 12,3 36,6 35,1 41,2 34,2 12,5 17,3 18,2 11,0 14,0 12,0 12,5 45,8  
ширина 6,4 5,0 6,1 23,5 16,2 7,6 5,2 5,8 6,2 4,0 12,5 6,0 6,1 29,0  
высота 5,4 5,5 10,4 11,9 13,7 15,2 5,2 5,8 6,2 4,8 8,4 7,4 7,5 15,3  

Использование локальных систем производства электрической и тепловой энергии с использованием газотурбинных энергетических установок (ГТУ) работающих на природном газе или пропане является одним из возможных решений данной задачи.

Газотурбинные установки получили в настоящее время признание в энергетике, как полностью освоенное, надежное оборудование.

Эксплуатационные показатели ГТУ на электростанциях находятся на том же уровне, что и традиционное энергетическое оборудование. Для них характерна готовность к работе в течение 90% календарного времени, 2 – 3 летний ремонтный цикл, безотказность пусков 95 – 97%.



Дата добавления: 2020-12-11; просмотров: 432;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.024 сек.